10
11
12
13
14
15
16
17
18
19

20

21
22
23

24
25
26
27

Creating A Single Global Electronic Market

eb XML Registry Services Specification v1.0
eb XML Registry Project Team
10 May 2001

1 Status of this Document

This document specifies an ebXML DRAFT STANDARD for the eBusiness community.
Distribution of this document is unlimited.
The document formatting is based on the Internet Society’s Standard RFC format.

This version:

http://www.ebxml.org/specs/ebRS .pdf

Latest version:

http://www.ebxml.org/specs/ebRS. pdf

2 ebXML participants

ebXML Registry Services, v1.0 was developed by the ebXML Registry Project Team.
At the time this specification was approved, the membership of the ebXML Registry
Project Team was as follows:

Lisa Carnahan, NIST
Joe Dalman, Tie
Philippe DeSmedt, Viquity

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56

ebXML Registry May 2001

Sally Fuger, AIAG

Len Gallagher, NIST

Steve Hanna, Sun Microsystems

Scott Hinkelman, IBM

Michael Kass, NIST

Jong.L Kim, Innodigital

Kyu-Chul Lee, Chungnam National University
Sangwon Lim, Korea Institute for Electronic Commerce
Bob Miller, GXS

Kunio Mizoguchi, Electronic Commerce Promotion Council of Japan
Dale Moberg, Sterling Commerce

Ron Monzillo, Sun Microsystems

JP Morgenthal, eThink Systems, Inc.

Joel Munter, Intel

Farrukh Najmi, Sun Microsystems

Scott Nieman, Norstan Consulting

Frank Olken, Lawrence Berkeley National Laboratory
Michael Park, eSum Technologies

Bruce Peat, eProcess Solutions

Mike Rowley, Excelon Corporation

Wagar Sadiq, Vitria

Krishna Sankar, Cisco Systems Inc.

Kim Tae Soo, Government of Korea

Nikola Stojanovic, Encoda Systems, Inc.

David Webber, XML Global

Yutaka Yoshida, Sun Microsystems

Prasad Yendluri, webmethods

Peter Z. Zhoo, Knowledge For the new Millennium

ebXML Registry Services Specification Page 2

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

56

57
58
59
60

61
62
63
64
65

66

67
68

69
70
71
72
73
74
75
76
77
78
79
80

81
82
83
84
85
86
87
88
89
90
91
92

93
94

ebXML Registry May 2001
Table of Contents
1 Status Of thiS DOCUMENT......oiiiee et 1
2 EDXML PArTiCIPANTS .oviiiiieieieieeeee ettt b b e enes 1
TaDIE OFf CONTENTS ...ttt b bbb 3
TaDIE Of TADIES .. et b e e b e aeenre s 7
G T |1 o Yo [Lo 1 o o SO S 8
3.1 Summary of Contents of DOCUMENTccevirierieie e 8
3.2 General CONVENLIONScccoeiiiiiiiiniinee ettt 8
GG U (o 1= ool TS 8
3.4 Related DOCUMENTScoeiirieriieieieiese et s 8
N B T Lo | IO oY =T ox LY=o ST 9
N T - | TS 9
4.2 Caveats and ASSUMPLIONScceoereriieriereriesiesesesesee e see e eeeneas 9
5 SYSTEM OVEIVIEW ...eeieieieciee sttt eee sttt s teesteete e teeaesseesseeseesseesseesaesseenseesaesseentesneessennsens 9
5.1 What The ebXML RegiStry DOEScccoviiiieriienienee e 9
5.2 How The ebXML Registry WOrKS.........ccoiririniriceesese e 9
5.2.1 Schema Documents Are Submittedccccevevenininencneneenen, 10
5.2.2 Business Process Documents Are Submittedc.cccoceveennee. 10
5.2.3 Seller’s Collaboration Protocol Profile Is Submitted 10
5.2.4 Buyer Discovers The Seller ... eiieieieseeie e 10
525 CPA IS EStabliSNedcocoveieiiiiisiesee e 10
5.3 Where the Registry Services May Be Implemented..............ccocovvreeene. 11
5.4 Implementation CONfOrMANCEcccooiiiirenireneeee s 11
5.4.1 Conformance as an ebXML RegiStry........ccccovevvsieneevesceesieenne, 11
5.4.2 Conformance as an ebXML Registry Client...........ccceeeveerennnene 11
6 REQISIIY ATCNITECTUIE .o 12
6.1 ebXML Registry Profiles and Agreementscccocceveevveeeneereseeseennn 13
6.2 Client To Registry Communication Bootstrappingccccceeeveeviveenieennne. 13
TG T [1 =] 1 = T = SR 14
6.4 Interfaces Exposed By The RegiStry.....cccccccevieierceeseeieseeseerie e 15
6.4.1 Synchronous and Asynchronous Responses.........ccccceceevveeenne. 15
Interface ReQIStIYSEIVICEccovieevie e 15
Interface ObjectManager ... 16
Interface ObjectQueryManager..........ccccceveeveecesieeseseeseesesee s 16
6.5 Interfaces Exposed By Registry ClientsScccocvveieniinieneere e 17
Interface RegiStryCleNtcooeiiinireeeeee e 17
6.6 Registry Response Class HierarChycccccevoevieniesescenecce e, 18
7 Object ManNagemMENT SEIVICEcccveii et ee sttt e s te e e s reene e e naens 19
7.1 Life Cycle of a RepOSItOry IteMccoceieiiiiiiseeeeeee s 19
ebXML Registry Services Specification Page 3

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

95
96
97
98
99
100
101
102
103
104
105
106

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

ebXML Registry May 2001

7.2 RegistryObject AtHDULEScovveeceeseee e 20
7.3 The Submit ObJects ProtoCOL.........cccccevieiiieesecce e 20
7.3.1 Universally Unique ID Generation..........cccccceeerenereneneseseeeenes 21

7.3.2 1D Attribute And Object Referencescccceeevenenenineneneeene 21

7.3.3 Sample SubmitObjectSReqUESLccccevvevieece e 22

7.4 The Add SIOtS ProtOCOL........ccooeiiiiirieseee e 24
7.5 The Remove SIOtS ProtOCOL........cccccvviiiiriiceseere e 24
7.6 The Approve Objects ProtOCOol........cccvveveiciesicie e 25
7.7 The Deprecate Objects ProtoCol.........ccccvvveveeiieiiie e 26
7.8 The Remove ODbjJects ProtoCol.........cccooiiiriiinininieeeesese s 26
7.8.1 Deletion Scope DeleteRepositoryltemOnly.........ccccceevvrvervrnenee. 27

7.8.2 Deletion Scope DeleteAll ... 27

8 Object Query Management SEIVICEcoiieeiirierierie et

8.1 Browse and Drill DOown QUErY SUPPOITccorereririerierese e 28
8.1.1 Get Root Classification Nodes Request..........cccccevveveveerieennene 28
8.1.2 Get Classification Tree ReqUESLcccoeveereeienieeneee e 29

8.1.3 Get Classified Objects REQUESLccccvcereririeierese e 29
8.1.3.1 Get Classified Objects Request Example 30

8.2 Filter QUEIY SUPPOIT.......i ittt et 32
8.2.1 FillErQUETY ...t 34

8.2.2 ReQIStTYENIIYQUETY.....c.eeiieeieeieesteeteeeesteeee e e ae et eee e sneene e 36

8.2.3 AuditableEventQUETY.........cce e 42

8.2.4 ClassificatioNNOAEQUENY.........cceiiririiereeee e 45

8.2.5 RegistryPackageQUETYcccooirireririrenieie e 48

8.2.6 OrganizatioNQUETYccoveueieeieeee et eee e s e sre e sre e 50

8.2.7 RetUrNREGISIIYENTIY......coiiiiiiieieeeeeee e e 53

8.2.8 RetUrnREpPOSITONYIIEM.......coiiiieie e 57

8.2.9 REQISINY FIltErSeoeeeee ettt 61
8.2.10 XML Clause Constraint Representation...........cccccceveveeceeieesnenne. 65

8.3 SQL QUETY SUPPOIT ...ttt sr e 69
8.3.1 SQL Query Syntax Binding To [ebRIM].......cccceovrierievrciereee, 69
8.3.1.1 Interface and Class Bindingcccceeeevveieieeieeceseeene, 69

8.3.1.2 Accessor Method To Attribute Bindingc.cccovvereneee 70

8.3.1.3 Primitive Attributes Bindingcccceveieiiiininennern 70

8.3.1.4 Reference Attribute Bindingcccceveeveevieceeiecce e, 70

8.3.1.5 Complex Attribute Bindingccccooovveininiinineee e 70

8.3.1.6 Collection Attribute BINdiNgccccoceeieiiiineriniecee, 71

8.3.2 Semantic Constraints On Query SyntaX.........cccceeeeeveereereeseeernnn 71

8.3.3 SQL QUErY RESUILSeoeiveecieectee ettt 71

8.3.4 Simple Metadata Based QUENEScceeereeieneneneneneeeeeee, 72

8.3.5 RegiStryENtry QUENIES ...cceceeceieeeeeceere e 72

8.3.6 Classification QUETIEScccueeieeeriecree ettt sree e 72
8.3.6.1 Identifying ClassificationNOdesccccceovierininerennenn. 72

8.3.6.2 Getting Root Classification Nodes........cc.cceceeviveiereeennene. 72

8.3.6.3 Getting Children of Specified ClassificationNode 73

ebXML Registry Services Specification Page 4

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

160
161
162
163
164
165
166
167
168
169
170

171

172
173
174

175
176
177
178

179
180
181
182

ebXML Registry May 2001

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

8.3.6.4 Getting Objects Classified By a ClassificationNode73
8.3.6.5 Getting ClassificationNodes That Classify an Object...73
8.3.7 ASSOCIAtioN QUETIESeeeeeeieeieesieeee et 73
8.3.7.1 Getting All Association With Specified Object As Its Source
73
8.3.7.2 Getting All Association With Specified Object As Its Target
74
8.3.7.3 Getting Associated Objects Based On Association Attributes
74
8.3.7.4 Complex Association QUENEScccceverereresereseenenn. 74
8.3.8 Package QUETIEScccveieeee et et ee ettt 74
8.3.8.1 Complex Package QUETIEScccccceveeveecieceece e, 74
8.3.9 ExternalLink QUETIEScceeueieeieeiesienie et 74
8.3.9.1 Complex ExternalLink QUETrIs........cccccevirirerenererennnn. 75
8.3.10 Audit Trail QUETIESeeeecreecreectee ettt 75
8.4 Ad Hoc Query ReqUESH/RESPONSEcceerieriiriierieeie e 75
8.5 CoNtent RELHEVAL......ceoieiieeee e 76
8.5.1 Identification Of Content Payloadsccccccevvevvieereececceeseenene, 76
8.5.2 GetContentResponse Message StruCturecccccvevveevceeesivnnns 76
8.6 Query And Retrieval: Typical SEQUENCE..........cceceriierierererreeee e 77
REGISIIY SECUTITY oottt ettt b e bbb 78
9.1 Integrity of Registry CONtENtccccveieiieceeece e 79
9.1.1 Message Payload Signature..........cccoerererieeieneneseseseeeeeeee 79
LS D2 U 11 01T o] (o= 11 o] o S 79
9.2.1 Message Header Signaturecccccevveceeveeveesescee e 79
9.3 CoNfIdeNtiAlitY ...ccceeeeeeiiee e 80
9.3.1 On-the-wire Message Confidentiality...........cccccererinirienenieniennnnn. 80
9.3.2 Confidentiality of Registry Content............ccccocveverieveececceeseenen, 80
9.4 AULNOFIZALION ..o et 80
9.4.1 Pre-defined Roles For Registry USersccoceverenereneneneennnn. 80
9.4.2 Default Access Control POIICIEScccvveririeiinere e, 80
Appendix A eb XML Registry DTD Definitionccccccveeveeie v 81
Appendix B Interpretation of UML DIiagramsccccooeeerreenieniieneeniesee e 92
B.1 UML ClasS DIGgram.......ccccooiriririeieiieniesie st see e seeneas 92
B.2 UML Sequence Diagram........ccccceeieiieiieiie e eee e s 93
Appendix C SOQL QUETY ettt et st st b et e e e ne e 93
C.1 SQL Query Syntax SPecCifiCationcccorerirerieriniieiesesese e 93
C.2 Non-Normative BNF for Query Syntax Grammarccceceevereerveennenn 94
C.3 Relational Schema For SQL QUETIES......ccceeeeieeecie et 95
Appendix D Non-normative Content Based Ad Hoc Queriescccoovenereenens 102
D.1.1 Automatic Classification of XML Content..........ccocvcevverienereennns 102
D.1.2 INdeX DefiNitioNccceiiiiiieieiere e 102
D.1.3 Example Of Index Definitionccccoveriienieeienineseseseseeeees 103
ebXML Registry Services Specification Page 5

183
184

185
186
187
188
189
190
191
192

193
194
195
196
197
198
199
200
201
202
203
204

205
206
207
208
209

210

211
212
213
214
215
216
217
218

ebXML Registry May 2001

D.1.4 Proposed XML Definitionccccceeveveeiesieeneere e 103

D.1.5 Example of Automatic Classificationccccceeveriveiriiesieennene 103
Appendix E Security Implementation Guideline.........coccoveeiininiiie e 103

E.1 AULNENLICALION ..ot nne s 104

A U 11 g (o] 172 11 0] o USRS 104

E.3 ReQIStry BOOISIIAP ...cveiiiriieieiie sttt 104

E.4 Content Submission — Client Responsibilitycccoevenireninienennne. 104

E.5 Content Submission — Registry Responsibility........c.ccccccvveveiieneennnn. 104

E.6 Content Delete/Deprecate — Client Responsibility..........ccccocevcveieenee. 105

E.7 Content Delete/Deprecate — Registry Responsibilityc.cccceeeneee. 105
Appendix F Native Language SUpPPOrt (NLS) ..o 105

F.L DEfiNItIONS .o sttt bbb 105

F.1.1 Coded Character Set (CCS): ..o 105

F.1.2 Character Encoding Scheme (CES):ccccooviinineneneneneneens 105

F.1.3 Character Set (Charset):......cccooevieiiececie e 106

F.2 NLS And Request / Response MeSSagescccuvvreereriereeniesieeseeneens 106

F.3 NLS And Storing of REQIStIYENTIY ... 106

F.3.1 Character Set of RegIStryENIIYccccveeeveeieeeeeeceee e, 106

F.3.2 Language Information of RegistryENntrycccccoevviiveveeinenne, 106

F.4 NLS And Storing of RepoSitory ItemSccccovereriieienenese e 107

F.4.1 Character Set of Repository Itemscccccvvvevveceveese e, 107

F.4.2 Language information of repository itemcccccceevvevveieveenene 107
Appendix G Terminology MapPPiNg oo 107
S =T =T T o = P 109
DT o] =] = P U PP SRR 110
(@7e] 01 €= Tod B 101 701 ¢ =11 [0 o H PSPPSR 111
COPYIgNT STALEMENT ... 112

Table of Figures

Figure 1: Registry Architecture Supports Flexible Topologies........cccovevveieiieiecieceenens 12
Figure 2: ebXML RegiStry INtEIrfACES ..o 14
Figure 3: Registry Reponse Class HierarChy..........cccocoviiinininineneeeesesese e 18
Figure 4: Life Cycle of a RePOSItOry ItE€Mccvcueiieiieecee e 20
Figure 5: Submit Objects Sequence DIagramcoeeereererie e 20
Figure 7: Add SIots SeqUENCE DIAgIramcccoviriririeieeriese st 24
Figure 8: Remove SIots SeqUENCE DIagramccceoeeeeieerecieeseeseeee e e eee e sre e snee e 25
Figure 9: Approve Objects Sequence Diagram........ccccceeceeiieiieciie e 25
ebXML Registry Services Specification Page 6

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

219
220
221
222
223
224
225
226
227
228

229

230

231
232

ebXML Registry May 2001

Figure 10:
Figure 11:
Figure 12:
Figure 14:
Figure 16:
Figure 17:
Figure 19:
Figure 20:
Figure 21:
Figure 23:

Deprecate Objects Sequence Diagramcccccveceieereesesieesieesee e sseesseseeseens 26
Remove Objects Sequence Diagram.........cccceceeieeieieeseeie e seeseeseesre e seesnens 27
Get Root Classification Nodes Sequence Diagram..........cccccceeveneresenenieenen. 28
Get Classification Tree Sequence Diagram.........ccocveveeerieeneneseseseseseseeens 29
A Sample Geography Classification.............cccceveeevieie e 30
Get Classified Objects Sequence Diagram..........cccoeeereeneeieseesesieesee e 31
Example eDRIM BiNAINGccooiiiiiiiiieeeeeee e 32
The Clause Dase StrUCIUIE.........cciriririeeeree e 65
Submit Ad Hoc Query Sequence Diagramcccccecveeieeiiecieesee e esee e 75
Typical Query and Retrieval SEQUENCE ..o 78

Table of Tables

Table 1: Terminology Mapping TabIe ... 108

ebXML Registry Services Specification Page 7

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

ebXML Registry May 2001

232 3 Introduction

233 3.1 Summary of Contents of Document

234 This document defines the interface to the ebXML Registry Services as well as
235 interaction protocols, message definitions and XML schema.

236 A separate document, ebXML Registry Information Model [ebRIM], provides information
237 on the types of metadata that are stored in the Registry as well as the relationships
238 among the various metadata classes.

239 3.2 General Conventions

240 The following conventions are used throughout this document:

241 o UML diagrams are used as a way to concisely describe concepts. They are not

242 intended to convey any specific Implementation or methodology requirements.

243 0 Theterm “repository item” is used to refer to an object that has been submitted to a
244 Registry for storage and safekeeping (e.g. an XML document or a DTD). Every

245 repository item is described by a RegistryEntry instance.

246 0 The term "RegistryEntry" is used to refer to an object that provides metadata about a
247 repository item.

248 0 Capitalized Italic words are defined in the ebXML Glossary.

249 The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
250 SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
251 document, are to be interpreted as described in RFC 2119 [Bra97].

252 3.3 Audience

253 The target audience for this specification is the community of software developers who
254 are:

255 0 Implementers of ebXML Registry Services
256 0 Implementers of ebXML Registry Clients

257 3.4 Related Documents

258 The following specifications provide some background and related information to the
259 reader:

260 a) ebXML Registry Information Model [ebRIM]

261 b) ebXML Message Service Specification [ebMS]

262 c) ebXML Business Process Specification Schema [ebBPM]

263 d) ebXML Collaboration-Protocol Profile and Agreement Specification [ebCPP]
ebXML Registry Services Specification Page 8

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

264

265

266
267
268
269
270

271

272
273
274

275

276
277
278
279
280

281
282

283
284
285

286

287

288
289
290
291
292

293

294
295
296

ebXML Registry May 2001

4 Design Objectives

4.1 Goals

The goals of this version of the specification are to:

o Communicate functionality of Registry services to software developers

0 Specify the interface for Registry clients and the Registry

0 Provide a basis for future support of more complete ebXML Registry requirements
0

Be compatible with other ebXML specifications

4.2 Caveats and Assumptions

The Registry Services specification is first in a series of phased deliverables. Later
versions of the document will include additional functionality planned for future
development.

It is assumed that:

1. Interoperability requirements dictate that the ebXML Message Services
Specification is used between an ebXML Registry and an ebXML Registry
Client. The use of other communication means is not precluded; however, in
those cases interoperability cannot be assumed. Other communication means
are outside the scope of this specification.

2. All access to the Registry content is exposed via the interfaces defined for the
Registry Services.

3. The Registry makes use of a Repository for storing and retrieving persistent
information required by the Registry Services. This is an implementation detalil
that will not be discussed further in this specification.

5 System Overview

5.1 What The ebXML Registry Does

The ebXML Registry provides a set of services that enable sharing of information
between interested parties for the purpose of enabling business process integration
between such parties based on the ebXML specifications. The shared information is
maintained as objects in a repository and managed by the ebXML Registry Services
defined in this document.

5.2 How The ebXML Registry Works

This section describes at a high level some use cases illustrating how Registry clients
may make use of Registry Services to conduct B2B exchanges. It is meant to be
illustrative and not prescriptive.

ebXML Registry Services Specification Page 9

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

297
298
299
300
301
302
303

304

305
306
307
308

309

310
311
312
313

314

315
316
317
318

319

320
321
322
323

324
325

326

327
328
329
330

ebXML Registry May 2001

The following scenario provides a high level textual example of those use cases in
terms of interaction between Registry clients and the Registry. It is not a complete listing
of the use cases that could be envisioned. It assumes for purposes of example, a buyer
and a seller who wish to conduct B2B exchanges using the RosettaNet PIP3A4
Purchase Order business protocol. It is assumed that both buyer and seller use the
same Registry service provided by a third party. Note that the architecture supports
other possibilities (e.g. each party uses its own private Registry).

5.2.1 Schema Documents Are Submitted

A third party such as an industry consortium or standards group submits the necessary
schema documents required by the RosettaNet PIP3A4 Purchase Order business
protocol with the Registry using the ObjectManager service of the Registry described in
Section 7.3.

5.2.2 Business Process Documents Are Submitted

A third party, such as an industry consortium or standards group, submits the necessary
business process documents required by the RosettaNet PIP3A4 Purchase Order
business protocol with the Registry using the ObjectManager service of the Registry
described in Section 7.3.

5.2.3 Seller’s Collaboration Protocol Profile Is Submitted

The seller publishes its Collaboration Protocol Profile or CPP as defined by [ebCPP] to
the Registry. The CPP describes the seller, the role it plays, the services it offers and
the technical details on how those services may be accessed. The seller classifies their
Collaboration Protocol Profile using the Registry’s flexible Classification capabilities.

5.2.4 Buyer Discovers The Seller

The buyer browses the Registry using Classification schemes defined within the
Registry using a Registry Browser GUI tool to discover a suitable seller. For example
the buyer may look for all parties that are in the Automotive Industry, play a seller role,
support the RosettaNet PIP3A4 process and sell Car Stereos.

The buyer discovers the seller's CPP and decides to engage in a partnership with the
seller.

5.25 CPA Is Established

The buyer unilaterally creates a Collaboration Protocol Agreement or CPA as defined by
[ebCPP] with the seller using the seller's CPP and their own CPP as input. The buyer
proposes a trading relationship to the seller using the unilateral CPA. The seller accepts
the proposed CPA and the trading relationship is established.

ebXML Registry Services Specification Page 10

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

331
332

333

334
335

336

337
338
339
340
341
342
343

344

345
346

347

348
349

350

351
352

353

354
355

356
357
358
359

ebXML Registry May 2001

Once the seller accepts the CPA, the parties may begin to conduct B2B transactions as
defined by [ebMS].

5.3 Where the Registry Services May Be Implemented

The Registry Services may be implemented in several ways including, as a public web
site, as a private web site, hosted by an ASP or hosted by a VPN provider.

5.4 Implementation Conformance

An implementation is a conforming ebXML Registry if the implementation meets the
conditions in Section 5.4.1. An implementation is aconforming ebXML Registry Client if
the implementation meets the conditions in Section 5.4.2. An implementation is a
conforming ebXML Registry and a conforming ebXML Registry Client if the
implementation conforms to the conditions of Section 5.4.1 and Section 5.4.2. An
implementation shall be a conforming ebXML Registry, a conforming ebXML Registry
Client, or a conforming ebXML Registry and Registry Client.

5.4.1 Conformance as an ebXML Registry

An implementation conforms to this specification as an ebXML registry if it meets the
following conditions:

1. Conforms tothe ebXML Registry Information Model [ebRIM].

2. Supports the syntax and semantics of the Registry Interfaces and Security
Model.

3. Supports the defined ebXML Registry DTD (Appendix A)

4. Optionally supports the syntax and semantics of Section 8.3, SQL Query
Support.

5.4.2 Conformance as an ebXML Registry Client

An implementation conforms to this specification, as an ebXML Registry Client if it
meets the following conditions:

1. Supports the ebXML CPA and bootstrapping process.

2. Supports the syntax and the semantics of the Registry Client Interfaces.
3. Supports the defined ebXML Error Message DTD.

4. Supports the defined ebXML Registry DTD.

ebXML Registry Services Specification Page 11

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

360

361
362
363
364

365
366
367
368

369
370
371
372
373

374
375
376
377
378
379

380
381

ebXML Registry May 2001

6 Registry Architecture

The ebXML Registry architecture consists of an ebXML Registry and ebXML Registry
Clients. The Registry Client interfaces may be local to the registry or local to the user.
Figure 1 depicts the two possible topologies supported by the registry architecture with
respect to the Registry and Registry Clients.

The picture on the left side shows the scenario where the Registry provides a web
based “thin client” application for accessing the Registry that is available to the user
using a common web browser. In this scenario the Registry Client interfaces reside
across the internet and are local to the Registry from the user’s view.

The picture on the right side shows the scenario where the user is using a “fat client”
Registry Browser application to access the registry. In this scenario the Registry Client
interfaces reside within the Registry Browser tool and are local to the Registry from the
user’s view. The Registry Client interfaces communicate with the Registry over the
internet in this scenario.

A third topology made possible by the registry architecture is where the Registry Client
interfaces reside in a server side business component such as a Purchasing business
component. In this topology there may be no direct user interface or user intervention
involved. Instead the Purchasing business component may access the Registry in an
automated manner to select possible sellers or service providers based current
business needs.

R | Repository |
| Repository

s T ek
ehXML Registry
_Registry

I —_—— |
. Tl Chetd mberfaces
T T |M| are provuded by the
| Ragiry Interfases chiesil amd ol the
! regiskry. The clhient
I may be a Regicry

Brmaser applcation
e e e e
|ﬁegs1r,' Chertt Imberfaces |

The Begutey
prosides e Client
irterfaces to all

[Jzers wia awel besed
ueer leefioes

oo
d Internet

Uzer poceemg the reaty
usng & Regalry biarer that
% conlains the Chend

using common web hrowser. e faces

ofr accecsny e Tegely

Figure 1: Registry Architecture Supports Flexible Topologies

ebXML Registry Services Specification Page 12

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

382
383

384
385
386
387
388

389
390

391
392

393
394
395
396

397

398
399
400
401
402

403
404
405
406

407
408
409
410
411

412

413
414
415
416

ebXML Registry May 2001

Clients communicate with the Registry using the ebXML Messaging Service in the same
manner as any two ebXML applications communicating with each other.

Future versions of this specification may provide additional services to explicitly extend
the Registry architecture to support distributed registries. However this current version
of the specification does not preclude ebXML Registries from cooperating with each
other to share information, nor does it preclude owners of ebXML Registries from
registering their ebXML registries with other registry systems, catalogs, or directories.

Examples include:
an ebXML Registry of Registries that serves as a centralized registration point;

cooperative ebXML Registries, where registries register with each other in a
federation;

registration of ebXML Registries with other Registry systems that act as white
pages or yellow pages. The document [ebXML-UDDI] provides an example of
ebXML Registries being discovered through a system of emerging white/yellow
pages known as UDDI.

6.1 ebXML Registry Profiles and Agreements

The ebXML CPP specification [ebCPP] defines a Collaboration-Protocol Profile (CPP)
and a Collaboration-Protocol Agreement (CPA) as mechanisms for two parties to share
information regarding their respective business processes. That specification assumes
that a CPA has been agreed to by both parties in order for them to engage in B2B
interactions.

This specification does not mandate the use of a CPA between the Registry and the
Registry Client. However if the Registry does not use a CPP, the Registry shall provide
an alternate mechanism for the Registry Client to discover the services and other
information provided by a CPP. This alternate mechanism could be simple URL.

The CPA between clients and the Registry should describe the interfaces that the
Registry and the client expose to each other for Registry-specific interactions. These
interfaces are described in Figure 2 and subsequent sections. The definition of the
Registry CPP template and a Registry Client CPP template are beyond the scope of this
document.

6.2 Client To Registry Communication Bootstrapping

Since there is no previously established CPA between the Registry and the
RegistryClient, the client must know at least one Transport-specific communication
address for the Registry. This communication address is typically a URL to the Registry,
although it could be some other type of address such as an email address.

ebXML Registry Services Specification Page 13

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

ebXML Registry May 2001

417 For example, if the communication used by the Registry is HTTP, then the

418 communication address is a URL. In this example, the client uses the Registry’s public
419 URL to create an implicit CPA with the Registry. When the client sends a request to the
420 Registry, it provides a URL to itself. The Registry uses the client's URL to form its

421 version of an implicit CPA with the client. At this point a session is established within the
422 Reqgistry.

423 For the duration of the client’s session with the Registry, messages may be exchanged
424 Dbidirectionally as required by the interaction protocols defined in this specification.

interface
RegisirySendce
interface interface
Objectifanager ObjectQueryifanager
T T
I [
I [
I [
I [
Object Create, lLdeEIE. Delete Object quenJland retrieval
I [
I [
I |
e —
R . - -
L -
- "
- — __'_F.-""-
interface
RegstryClhent
425
426 Figure 2: ebXML Registry Interfaces

427 6.3 Interfaces

428 This specification defines the interfaces exposed by both the Registy (Section 6.4) and
429 the Registry Client (Section 6.5). Figure 2 shows the relationship between the

430 interfaces and the mapping of specific Registy interfaces with specific Registry Client
431 interfaces.

ebXML Registry Services Specification Page 14

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

432

433
434

435
436
437

438
439

440
441
442

443

444
445
446

a47
448

449
450
451
452
453

454
455

456

457

458
459
460

461

ebXML Registry May 2001

6.4 Interfaces Exposed By The Registry

When using the ebXML Messaging Services Specification, ebXML Registry Services
elements correspond to Messaging Services elements as follows:

The value of the Service element in the MessageHeader is an ebXML Registry
Service interface name (e.g., “ObjectManager”). The type attribute of the Service
element should have a value of “ebXMLRegistry”.

The value of the Action element in the MessageHeader is an ebXML Registry
Service method name (e.g., “submitObjects”).

Note that the above allows the Registry Client only one interface/method pair per
message. This implies that a Registry Client can only invoke one method on a specified
interface for a given request to a registry.

6.4.1 Synchronous and Asynchronous Responses

All methods on interfaces exposed by the registry return a response message.
Asynchronous response
o0 MessageHeader only;

o No registry response element (e.g., AdHocQueryResponse and
GetContentResponse).

Synchronous response
0 MessageHeader;
0 Registry response elementincluding
= a status attribute (success or failure)
= an optional ebXML Error.

The ebXML Registry implements the following interfaces as its services (Registry
Services).

6.4.2 Interface RegistryService

This is the principal interface implemented by the Registry. It provides the methods that
are used by the client to discover service-specific interfaces implemented by the
Registry.

| Obj ect Manager ‘laet Obi ect Manaaer () ‘

ebXML Registry Services Specification Page 15

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

462

463

464
465
466
467
468
469

470

471

472

473
474

ebXML Registry May 2001

Returns the ObjectManager interface implemented by
the Registry service.

Obj ect Quer yManager ||get Obj ect Quer yManager ()
Returns the ObjectQueryManager interface
implemented by the Registry service.

6.4.3 Interface ObjectManager

This is the interface e xposed by the Registry Service that implements the Object life
cycle management functionality of the Registry. Its methods are invoked by the Registry
Client. For example, the client may use this interface to submit objects, to classify and
associate objects and to deprecate and remove objects. For this specification the
semantic meaning of submit, classify, associate, deprecate and remove is found in
[ebRIM].

Method Summary of ObjectManager

Regi st ryResponse|lappr oveObj ect s(Appr oveObj ect sRequest req)
Approves one or more previously submitted objects.

Regi st ryResponse||depr ecat eObj ect s(Depr ecat eObj ect sRequest req)
Deprecates one or more previously submitted
objects.

Regi st ryResponse||r enoveCbj ect s(RenbveObj ect sRequest req)
Removes one or more previously submitted objects
from the Registry.

Regi st ryResponse||subni t Cbj ect s(Subni t Obj ect sRequest req)
Submits one or more objects and possibly related
metadata such as Associations and Classifications.

Regi st ryResponse||addS| ot s(AddSI ot sRequest req)
Add slots to one or more registry entries.

Regi st ryResponse||r enoveS| ot s(RenpbveS| ot sRequest req)
Remove specified slots from one or more registry
entries.

6.4.4 Interface ObjectQueryManager

This is the interface exposed by the Registry that implements the Object Query
management service of the Registry. Its methods are invoked by the Registry Client.

ebXML Registry Services Specification Page 16

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

ebXML Registry May 2001

475 For example, the client may use this interface to perform browse and drill down queries
476 or ad hoc queries on registry content.

Method Summary of ObjectQueryManager

Regi stryResponse||lget Cl assi ficationTreeg(

477

Cet Cl assi ficati onTreeRequest req)

Returns the ClassificationNode Tree under the
ClassificationNode specified in
GetClassificationTreeRequest.

Regi stryResponse|lget Cl assi fi edObj ect s(

CGet Cl assi fi edObj ect sRequest req)
Returns a collection of references to
RegistryEntries classified under specified
Classificationltem.

Regi st ryResponse||get Cont ent ()

Returns the content of the specified Repository
Item. The response includes all the content
specified in the request as additional payloads
within the response message.

Regi st ryResponse|lget Root Cl assi fi cati onNodes(

Cet Root Cl assi fi cati onNodesRequest req)
Returns all root ClassificationNodes that match
the namePattern attribute in
GetRootClassificationNodesRequest request.

Regi stryResponse|lsubm t AdhocQuer y(AdhocQuer yRequest req)
Submit an ad hoc query request.

478 6.5 Interfaces Exposed By Registry Clients

479 An ebXML Registry client implements the following interface.

480 6.5.1 Interface RegistryClient

481

482 This is the principal interface implemented by a Registry client. The client provides this
483 interface when creating a connection to the Registry. It provides the methods that are
484 used by the Registry to deliver asynchronous responses to the client. Note that a client
485 need not provide a RegistryClient interface if the [CPA] between the client and the

486 registry does not support asynchronous responses.

ebXML Registry Services Specification Page 17

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

ebXML Registry May 2001

487 The registry sends all asynchronous responses to operations to the onResponse
488 method.

489
voi d|lonResponse(Regi st ryResponse resp)
Notifies client of the response sent by registry to previously submitted
request.
490

491 6.6 Registry Response Class Hierarchy

492 Since many of the responses from the registry have common attributes they are
493 arranged in the following class hierarchy. This hierarchy is reflected in the registry DTD.

interface
RegistyResponse

interface interface
AdirocQueryResponse GelContentRasponse

interface
GetRoolClassificaionNodeResponse

interface
GetClassificationTreeResponse

interface
GelClassifedOljectsResponse
494
495 Figure 3: Registry Reponse Class Hierarchy
496
497
ebXML Registry Services Specification Page 18

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

488

499

500

501

502
503
504
505
506
507

508
509
510
511

512

513
514

515
516
517

518

ebXML Registry May 2001

7 Object Management Service

This section defines the ObjectManagement service of the Registry. The Object
Management Service is a sub-service of the Registry service. It provides the
functionality required by RegistryClients to manage the life cycle of repository items
(e.g. XML documents required for ebXML business processes). The Object
Management Service can be used with all types of repository items as well as the
metadata objects specified in [ebRIM] such as Classification and Association.

The minimum security policy for an ebXML registry is to accept content from any client if
the content is digitally signed by a certificate issued by a Certificate Authority

recognized by the ebXML registry. Submitting Organizations do not have to register
prior to submitting content.

7.1 Life Cycle of a Repository Item

The main purpose of the ObjectManagement service is to manage the life cycle of
repository items.

Figure 4 shows the typical life cycle of a repository item. Note that the current version of
this specification does not support Object versioning. Object versioning will be added in
a future version of this specification.

- submitOhject Submitted

—

approveOhject

Ty
Approved

deprecateChject

T
Deprecated

removelbject

ey
@ Femoved
e—

ebXML Registry Services Specification Page 19

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

519

520

521
522
523
524
525
526

527

528
529
530
531

532

533
534

535
536
537

538
539

ebXML Registry May 2001

Figure 4: Life Cycle of a Repository Item

7.2 RegistryObject Attributes

A repository item is associated with a set of standard metadata defined as attributes of
the RegistryObject class and its sub-classes as described in [ebRIM]. These attributes
reside outside of the actual repository item and catalog descriptive information about the
repository item. XML elements called ExtrinsicObject and IntrinsicObject (See Appendix
A for details) encapsulate all object metadata attributes defined in [ebRIM] as XML
attributes.

7.3 The Submit Objects Protocol

This section describes the protocol of the Registry Service that allows a RegistryClient
to submit one or more repository items to the repository using the ObjectManager on
behalf of a Submitting Organization. It is expressed in UML notation as described in
Appendix B.

client ohiiMar
FegistrClient Chjecthanager

submitOhjects{SubmitOhjectsRequest:RegistrvResponse |

L

onResponselRegistResponsedvoid |

L:J =

Figure 5: Submit Objects Sequence Diagram

For details on the schema for the Business documents shown in this process refer to
Appendix A.
The SubmitObjectRequest message includes a RegistrEntryList element.

The RegistryEntryList element specifies one or more ExtrinsicObjects or other
RegistryEntries such as Classifications, Associations, ExternalLinks, or Packages.

ebXML Registry Services Specification Page 20

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

ebXML Registry May 2001

540 An ExtrinsicObject element provides required metadata about the content being

541 submitted to the Registry as defined by [ebRIM]. Note that these standard

542 ExtrinsicObject attributes are separate from the repository item itself, thus allowing the
543 ebXML Registry to catalog objects of any object type.

544 In the event of success, the registry sends a RegistryResponse with a status of
545 “success” back to the client. In the event of failure, the registry sends a
546 RegistryResponse with a status of “failure” back to the client.

547 7.3.1 Universally Unique ID Generation

548 As specified by [ebRIM], all objects in the registry have a unique id. The id must be a
549 Universally Unique Identifier (UUID) and must conform to the to the format of a URN
550 that specifies a DCE 128 bit UUID as specified in [UUID].

551 (e.g.urn: uui d: a2345678- 1234- 1234- 123456789012)

552 Thisid is usually generated by the registry. Thei d attribute for submitted objects may
553 optionally be supplied by the client. If the client supplies the i d and it conforms to the
554 format of a URN that specifies a DCE 128 bit UUID then the registry assumes that the
555 client wishes to specify thei d for the object. In this case, the registry must honor a
556 client-supplied i d and use it as the i d attribute of the object in the registry. If thei d is
557 found by the registry to not be globally unique, the registry must raise the error

558 condition: InvalididError.

559 If the client does not supply ani d for a submitted object then the registry must generate
560 a universally uniquei d. Whether the i d is generated by the client or whether it is

561 generated by the registry, it must be generated using the DCE 128 bit UUID generation
562 algorithm as specified in [UUID].

563 7.3.2 ID Attribute And Object References

564 The id attribute of an object may be used by other objects to reference the first object.
565 Such references are common both within the SubmitObjectsRequest as well as within
566 the registry. Within a SubmitObjectsRequest, the id attribute may be used to refer to an
567 object within the SubmitObjectsRequest as well as to refer to an object within the

568 registry. An object in the SubmitObjectsRequest that needs to be referred to within the
569 request document may be assigned an id by the submitter so that it can be referenced
570 within the request. The submitter may give the object a proper uuid URN, in which case
571 the id is permanently assigned to the object within the registry. Alternatively, the

572 submitter may assign an arbitrary id (not a proper uuid URN) as long as the id is unique
573 within the request document. In this case the id serves as a linkage mechanism within
574 the request document but must be ignored by the registry and replaced with a registry
575 generated id upon submission.

ebXML Registry Services Specification Page 21

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

576
577
578
579

580

581
582
583

584
585
586

587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634

ebXML Registry May 2001

When an object in a SubmitObjectsRequest needs to reference an object that is already
in the registry, the request must contain an ObjectRef element whose id attribute is the
id of the object in the registry. This id is by definition a proper uuid URN. An ObjectRef
may be viewed as a proxy within the request for an object that is in the registry.

7.3.3 Sample SubmitObjectsRequest

The following example shows several different use cases in a single
SubmitObjectsRequest. It does not show the complete ebXML Message with the
message header and additional payloads in the message for the repository items.

A SubmitObjectsRequest includes a RegistryEntryList which contains any number of
objects that are being submitted. It may also contain any number of ObjectRefs to link
objects being submitted to objects already within the registry.

<?xm version = "1.0" encoding = "UTF-8"?>
<! DOCTYPE Subm t Obj ect sRequest SYSTEM "file:////hone/najm/Registry.dtd">

<Subm t Obj ect sRequest >
<Regi stryEntryLi st >

<l —
The foll owi ng 3 objects package specified ExtrinsicCbject in specified
Package, where both the Package and the ExtrinsicCbject are
being subnitted
-->
<Package id = "acnePackagel" name = "Package #1" description = "ACME s package #1"/>
<ExtrinsicObject id = "acnmeCPP1" content URl = "CPP1"
obj ect Type = "CPP* nane = "Wdget Profile"
description = "ACME's profile for selling w dgets"/>
<Associ ation id = "acnmePackagel-acmeCPPl- Assoc" associ ati onType = "Packages"
sour ce(pj ect = "acnePackagel" target bject = "acmeCPP1"/ >

<l —
The following 3 objects package specified ExtrinsicChject in specified Package,
Wiere the Package is being submitted and the ExtrinsicCbject is
already in registry
-->
<Package id = "acnePackage2" nanme = "Package #2" description = "ACME s package #2"/>
<oj ect Ref id = "urn:uuid: a2345678-1234-1234-123456789012"/ >
<Associ ation id = "acnmePackage2-al readySubm t t edCPP- Assoc"
associ ati onType = "Packages" sourceChject = "acnePackage2"
target Cbj ect = "urn: uui d: a2345678- 1234- 1234- 123456789012" / >

<l —
The foll owi ng 3 objects package specified ExtrinsicCbject in specified Package,
where the Package and the ExtrinsicCbject are already in registry
>
<Qbj ect Ref id = "urn:uui d: b2345678-1234-1234-123456789012"/ >
<bj ect Ref id = "urn: uuid: c2345678-1234-1234-123456789012"/ >
<l-- idis unspecified inplying that registry nust create a uuid for this object -->
<Associ ati on associ ati onType = "Packages"
sour ceoj ect = "urn: uui d: b2345678- 1234- 1234- 123456789012"
target Gbj ect = "urn: uui d: c2345678- 1234- 1234- 123456789012" / >

<l —

The following 3 objects externally |ink specified ExtrinsicCbject using

speci fi ed External Li nk, where both the External Link and the Extrinsi cQbject

are being subnitted

so >

<External Link id = "acneLi nk1" name = "Link #1" description = "ACME s Link #1"/>
<ExtrinsicCoject id = "acneCPP2" contentUR = "CPP2" object Type = "CPP"

ebXML Registry Services Specification Page 22

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

ebXML Registry May 2001

635 name = "Sprockets Profile" description = "ACME' s profile for selling sprockets"/>
636 <Associ ation id = "acneLi nk1l- acmeCPP2- Assoc" associ ati onType = "External | yLi nks"
637 sour ceChj ect = "acnelLi nk1" target Cbject = "acneCPP2"/>
638
639 <l --
640 The following 2 objects externally |ink specified ExtrinsicCoject using specified
641 Ext ernal Li nk, where the External Link is being subnitted and the ExtrinsicQbj ect
642 is already in registry. Note that the target Cbject points to an (bjectRef in a
643 previous |ine
644 -- >
645 <External Link id = "acneLi nk2" nane = "Link #2" description = "ACMVE s Link #2"/>
646 <Associ ation id = "acneLi nk2- al r eadySubni t t edCPP- Assoc"
647 associ ati onType = "External | yLi nks" sourceCbj ect = "acneLi nk2"
gjg target Gbj ect = "urn: uui d: a2345678- 1234- 1234- 123456789012" / >
650 <l --
651 The following 2 objects externally identify speci fied ExtrinsicQbject using specified
652 External I dentifier, where the External ldentifier is being subnitted and the
653 ExtrinsicObject is already in registry. Note that the target Cbject points to an
654 bj ectRef in a previous |ine
655 -->
656 <External Identifier id = "acmeDUNSI d" name = "DUNS" description = "DUNS ID for ACVE"
657 val ue = "13456789012"/ >
658 <Associ ation id = "acmeDUNSI d-al readySubmi t t edCPP- Assoc"
659 associ ati onType = "External |yl dentifies" source(hject = "acmeDUNSId"
ggg target Qbj ect = "urn: uui d: a2345678- 1234- 1234- 123456789012" / >
662 <l --
223 The fol | owi ng show submi ssion of a brand new cl assification scheme in its entirety
4 —= =
665 <d assi ficati onNode id = "geographyNode" nane = " Geography"
666 description = "The Geography scheme exanple from Regi stry Services Spec" />
667 <d assificationNode id = "asi aNode" nane = "Asia"
668 description = "The Asia node under the Geography node" parent="geographyNode" />
669 <d assificationNode id = "japanNode" nane = "Japan"
670 description ="The Japan node under the Asia node" parent="asi aNode" />
671 <d assificati onNode id = "koreaNode" nane = "Korea"
672 description ="The Korea node under the Asia node" parent="asi aNode" />
673 <O assificati onNode id = "europeNode" name = "Europe"
674 description = "The Europe node under the Geography node" parent="geographyNode" />
675 <d assi ficationNode id = "germanyNode" name = " Ger many"
676 description ="The Germany node under the Asia node" parent="europeNode" />
677 <d assi ficationNode id = "northAmeri caNode" nane = "North America"
678 description = "The North Anerica node under the Geography node"
679 par ent =" geogr aphyNode" />
680 <d assificationNode id = "usNode" name = "US'
gg% description ="The US node under the Asia node" parent="northAnmericaNode" />
683 <l --
684 The followi ng show subm ssion of a Autonotive sub-tree of O assificationNodes that
685 gets added to an existing classification scheme named ' | ndustry’
686 that is already in the registry
687 -->
688 <(bj ect Ref i d="urn: uui d: d2345678- 1234- 1234- 123456789012" />
689 <O assificationNode id = "autonotiveNode" name = "Autonotive"
690 description = "The Autonotive sub-tree under |ndustry schene"
691 parent = "urn:uui d: d2345678-1234-1234-123456789012"/ >
692 <O assificationNode id = "part SuppliersNode" name = "Parts Supplier"
693 description = "The Parts Supplier node under the Autonotive node"
694 par ent =" aut onot i veNode" />
695 <Cl assificati onNode id = "engi neSuppl i ersNode" name = "Engi ne Supplier"
696 description = "The Engi ne Supplier node under the Autonotive node"
697 par ent =" aut onot i veNode" />
698
699 <l --
700 The fol | owi ng show submi ssion of 2 Cassifications of an object that is already in
701 the registry using 2 O assificati onNodes. One d assificati onNode
78% is being submitted in this request (Japan) while the other is already in the registry.
7 —= =
704 <O assification id = "japand assification"
ebXML Registry Services Specification Page 23

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

705
706
707
708
709
710
711
712
713
714
715
716

717

718
719
720

721
722

723
724
725

726

727
728

ebXML Registry May 2001

description = "Cl assifies object by /CGeography/ Asi a/ Japan node"

cl assi fi edObj ect ="ur n: uui d: a2345678-1234- 1234- 123456789012"

cl assi fi cati onNode="j apanNode" />
<O assification id = "cl assificati onUsi ngExi sti ngNode"

description = "C assifies object using a node in the registry"

cl assi fi edOoj ect ="urn: uui d: a2345678-1234- 1234- 123456789012"

cl assi ficati onNode="ur n: uui d: e2345678-1234- 1234- 123456789012" />
<Obj ect Ref i d="urn: uui d: e2345678-1234-1234- 123456789012" />

</ Regi stryEntryLi st>
</ Subm t bj ect sRequest >

7.4 The Add Slots Protocol

This section describes the protocol of the Registry Service that allows a client to add
slots to a previously submitted registry entry using the ObjectManager. Slots provide a
dynamic mechanism for extending registry entries as defined by [ebRIM].

client ohjMar
RegistrvClient Ohjecttanager

addSlotsiAddSIotsRequest: RegisthvResponse |

L]

onResponselRegistvResponse)void |

L:J =

Figure 7: Add Slots Sequence Diagram

In the event of success, the registry sends a RegistryResponse with a status of
“success” back to the client. In the event of failure, the registry sends a
RegistryResponse with a status of “failure” back to the client.

7.5 The Remove Slots Protocol

This section describes the protocol of the Registry Service that allows a client to remove
slots to a previously submitted registry entry using the ObjectManager.

ebXML Registry Services Specification Page 24

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

ebXML Registry May 2001

client obijiMar
RegistvClient OhjectManager

removesSlots(RemoveSlotsReguest: ReqistrvResponse |

L]

onResponselRegistyResponsedvoid |

L:J =

729
730 Figure 8: Remove Slots Sequence Diagram

731 In the event of success, the registry sends a RegistryResponse with a status of
732 “success” back to the client. In the event of failure, the registry sends a
733 RegistryResponse with a status of “failure” back to the client.

734 7.6 The Approve Objects Protocol

735 This section describes the protocol of the Registry Service that allows a client to

736 approve one or more previously submitted repository items using the ObjectManager.
737 Once arepository item is approved it will become available for use by business parties
738 (e.g. during the assembly of new CPAs and Collaboration Protocol Profiles).

cliemnt ohjMyr
FegistmClient ChjectManager

approveObjectsidpproveDbjectsReguest ReqistryResponse |

L

onResponselRegistyResponselvoid |

L:J =

739
740 Figure 9: Approve Objects Sequence Diagram

ebXML Registry Services Specification Page 25

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

ebXML Registry May 2001

741 In the event of success, the registry sends a RegistryResponse with a status of
742 “success” back to the client. In the event of failure, the registry sends a
743 RegistryResponse with a status of “failure” back to the client.

744 For details on the schema for the business documents shown in this process refer to
745 Appendix A.

746 7.7 The Deprecate Objects Protocol

747 This section describes the protocol of the Registry Service that allows a client to

748 deprecate one or more previously submitted repository items using the ObjectManager.
749 Once an object is deprecated, no new references (e.g. newAssociations,

750 Classifications and ExternalLinks) to that object can be submitted. However, existing
751 references to a deprecated object continue to function normally.

client ohjMgr
RegistryClient Chjecthanager

deprecateChbjectsiDeprecateChjectsRequesty.RenistrvResponse |

L]

onResponse(RegistrResponseivoid |

L:J =

752
753 Figure 10: Deprecate Objects Sequence Diagram

754 Inthe event of success, the registry sends a RegistryResponse with a status of
755 “success” back to the client. In the event of failure, the registry sends a
756 RegistryResponse with a status of “failure” back to the client.

757 For details on the schema for the business documents shown in this process refer to
758 Appendix A.

759 7.8 The Remove Objects Protocol

760 This section describes the protocol of the Registry Service that allows a client to remove
761 one or more RegistryEntry instances and/or repository items using the ObjectManager.

762 The RemoveObjectsRequest message is sent by a client to remove RegistryEntry

763 instances and/or repository items. The RemoveObjectsRequest element includes an

764 XML attribute called deletionScope which is an enumeration that can have the values as
765 defined by the following sections.

ebXML Registry Services Specification Page 26

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

766

767
768
769

770

771
772
773
774
775
776

777

778
779

780
781
782

783
784

785

786
787
788

ebXML Registry May 2001

7.8.1 Deletion Scope DeleteRepositoryltemOnly

This deletionScope specifies that the request should delete the repository items for the
specified registry entries but not delete the specified registry entries. This is useful in
keeping references to the registry entries valid.

7.8.2 Deletion Scope DeleteAll

This deletionScope specifies that the request should delete both the RegistryEntry and
the repository item for the specified registry entries. Only if all references (e.g.
Associations, Classifications, ExternalLinks) to a RegistryEntry have been removed, can
that RegistryEntry then be removed using a RemoveObjectsRequest with
deletionScope DeleteAll. Attempts to remove a RegistryEntry while it still has references
raises an error condition: InvalidRequestError.

The remove object protocol is expressed in UML notation as described in Appendix B.

client ohiiMar
FegistrClient Chjecthanager

remnavedbjects{RemoveDhjectsRequest:RegistvResponse |

L

onResponselRegistResponsedvoid |

L:J =

Figure 11: Remove Objects Sequence Diagram

In the event of success, the registry sends a RegistryResponse with a status of
“success” back to the client. In the event of failure, the registry sends a
RegistryResponse with a status of “failure” back to the client.

For details on the schema for the business documents shown in this process refer to
Appendix A.

8 Object Query Management Service

This section describes the capabilities of the Registry Service that allow a client
(ObjectQueryManagerClient) to search for or query RegistryEntries in the eb XML
Registry using the ObjectQueryManager interface of the Registry.

ebXML Registry Services Specification Page 27

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

789
790
791
792

793
794
795
796
797

798
799

800
801

802

803
804
805

806

807
808
809
810
811
812

813
814

ebXML Registry May 2001

The Registry supports multiple query capabilities. These include the following:
1. Browse and Drill Down Query
2. Filtered Query
3. SQL Query

The browse and drill down query in Section 8.1 and the filtered query mechanism in
Section 8.2 SHALL be supported by every Registry implementation. The SQL query
mechanism is an optional feature and MAY be provided by a registry implementation.
However, if a vendor provides an SQL query capability to an ebXML Registry it SHALL
conform to this document. As such this capability is a normative yet optional capability.

In a future version of this specification, the W3C XQuery syntax may be considered as
another query syntax.

Any errors in the query request messages are indicated in the corresponding query
response message.

8.1 Browse and Drill Down Query Support

The browse and drill drown query style is supported by a set of interaction protocols
between the ObjectQueryManagerClient and the ObjectQueryManager. Sections 8.1.1,
8.1.2 and 8.1.3 describe these protocols.

8.1.1 Get Root Classification Nodes Request

An ObjectQueryManagerClient sends this request to get a list of root
ClassificationNodes defined in the repository. Root classification nodes are defined as
nodes that have no parent. Note that it is possible to specify a namePattern attribute
that can filter on the name attribute of the root ClassificationNodes. The namePattern
must be specified using a wildcard pattern defined by SQL-92 LIKE clause as defined

by [SQL].

client ue r
RegistryClient OhjectueryWanager

getRootClassificationdodes(GetRootClassificationModesReguest . RegisttvResponse

| |
T .
| L
| |
I onResponse(RegistryResponse)void I
I I
I I
I I
I I
I I
I I
| |
Figure 12: Get Root Classification Nodes Sequence Diagram
ebXML Registry Services Specification Page 28

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

815
816
817

818
819

820

821
822
823
824
825
826

827

828
829

830
831
832

833
834

835

836
837
838

839
840
841

ebXML Registry May 2001

In the event of success, the registry sends a GetRootClassificationNodeResponse with
a status of “success” back to the client. In the event of failure, the registry sends a
GetRootClassificationNodeResponse with a status of “failure” back to the client.

For details on the schema for the business documents shown in this process refer to
Appendix A.

8.1.2 Get Classification Tree Request

An ObjectQueryManagerClient sends this request to get the ClassificationNode sub-tree
defined in the repository under the ClassificationNodes specified in the request. Note
that a GetClassificationTreeRequest can specify an integer attribute called depth to get
the sub-tree up to the specified depth. If depth is the default value of 1, then only the
immediate children of the specified ClassificationNodeList are returned. If depth is O or a
negative number then the entire sub-tree is retrieved.

client ue r
RegistryClient OhjectQueryWanager

getClassificationTreedGetClassificationTreeRequest RegistryResponse

onResponse(RegistryResponse)void

I I
i T

I I
] o

| |

I I

I I

I I

| |

Figure 14. Get Classification Tree Sequence Diagram

In the event of success, the registry sends a GetClassificationTreeResponse with a
status of “success” back to the client. In the event of failure, the registry sends a
GetClassificationTreeResponse with a status of “failure” back to the client.

For details on the schema for the business documents shown in this process refer to
Appendix A.

8.1.3 Get Classified Objects Request

An ObjectQueryManagerClient sends this request to get a list of RegistryEntries that are
classified by all of the specified ClassificationNodes (or any of their descendants), as
specified by the ObjectRefList in the request.

It is possible to get RegistryEntries based on matches with multiple classifications. Note
that specifying a ClassificationNode is implicitly specifying a logical OR with all
descendants of the specified ClassificationNode.

ebXML Registry Services Specification Page 29

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

842
843

844
845

846

847
848

849

850
851
852
853

854
855
856

857
858
859

860
861
862
863

ebXML Registry May 2001

When a GetClassifiedObjectsRequest is sent to the ObjectQueryManager it should
return Objects that are:

1. Either directly classified by the specified ClassificationNode
2. Or are directly classified by a descendant of the specified ClassificationNode

8.1.3.1 Get Classified Objects Request Example

{7 Japan
g ,;l Korea
. =] Europe
o] Germany
=] Morth America

Figure 16: A Sample Geography Classification

Let us say a classification tree has the structure shown in Figure 16:

If the Geography node is specified in the GetClassifiedObjectsRequest then the
GetClassifiedObjectsResponse should include all RegistryEntries that are directly
classified by Geography or North America or US or Asia or Japan or Korea or
Europe or Germany.

If the Asia node is specified in the GetClassifiedObjectsRequest then the
GetClassifiedObjectsResponse should include all RegistryEntries that are directly
classified by Asia or Japan or Korea.

If the Japan and Korea nodes are specified in the GetClassifiedObjectsRequest
then the GetClassifiedObjectsResponse should include all RegistryEntries that
are directly classified by both Japan and Korea.

If the North America and Asia node is specified in the
GetClassifiedObjectsRequest then the GetClassifiedObjectsResponse should
include all RegistryEntries that are directly classified by (North America or US)
and (Asia or Japan or Korea).

ebXML Registry Services Specification Page 30

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

864

865

866
867
868

ebXML Registry May 2001

client ue r
RegistryClient OhjectQueryWanager

getClassifiedOhjects(GetzlassifiedOhjectsRequest:RegistrvResponse

onResponse(RegistryResponse)void

I I
i 7

I I
] -

| |

I I

I I

I I

| |

Figure 17: Get Classified Objects Sequence Diagram

In the event of success, the registry sends a GetClassifiedObjectsResponse with a
status of “success” back to the client. In the event of failure, the registry sends a
GetClassifiedObjectsResponse with a status of “failure” back to the client.

ebXML Registry Services Specification Page 31

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

869

870
871
872
873
874
875

876
877
878
879
880
881

882
883
884
885
886
887

888
889
890
891
892
893
894
895

896
897

898
899
900
901
902
903
904

ebXML Registry May 2001

8.2 Filter Query Support

FilterQuery is an XML syntax that provides simple query capabilities for any ebXML
conforming Registry implementation. Each query alternative is directed against a single
class defined by the ebXML Registry Information Model (ebRIM). The result of such a
guery is a set of identifiers for instances of that class. A FilterQuery may be a stand-
alone query or it may be the initial action of a ReturnRegistryEntry query or a
ReturnRepositoryltem query.

A client submits a FilterQuery, a ReturnRegistryEntry query, or a ReturnRepositoryltem
guery to the ObjectQueryManager as part of an AdhocQueryRequest. The
ObjectQueryManager sends an AdhocQueryResponse back to the client, enclosing the
appropriate FilterQueryResponse, ReturnRegistryEntryResponse, or
ReturnRepositoryltemResponse specified herein. The sequence diagrams for
AdhocQueryRequest and AdhocQueryResponse are specified in Section 8.4.

Each FilterQuery alternative is associated with an ebRIM Binding that identifies a
hierarchy of classes derived from a single class and its associations with other classes
as defined by ebRIM. Each choice of a class pre-determines a virtual XML document
that can be queried as a tree. For example, let C be a class, let Y and Z be classes that
have direct associations to C, and let V be a class that is associated with Z. The ebRIM
Binding for C might be as in Figure 19.

C
Labfll Labflz

Y Z

Label3

<

Figure 19: Example ebRIM Binding

Labell identifies an association from C to Y, Label2 identifies an association from C to
Z, and Label3 identifies an association from Z to V. Labels can be omitted if there is no
ambiguity as to which ebRIM association is intended. The name of the query is
determined by the root class, i.e. this is an ebRIM Binding for a CQuery. The Y node in
the tree is limited to the set of Y instances that are linked to C by the association
identified by Labell. Similarly, the Z and V nodes are limited to instances that are linked
to their parent node by the identified association.

ebXML Registry Services Specification Page 32

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

905
906
907
908
909
910

911
912
913
914
915
916
917
918

919
920
921
922
923

924
925
926
927

928
929
930

931
932
933

934
935
936
937
938
939
940
941

ebXML Registry May 2001

Each FilterQuery alternative depends upon one or more class filters, where a class filter
is a restricted predicate clause over the attributes of a single class. The supported class
filters are specified in Section 8.2.9 and the supported predicate clauses are defined in
Section 8.2.10. A FilterQuery will be composed of elements that traverse the tree to
determine which branches satisfy the designated class filters, and the query result will
be the set of root node instances that support such a branch.

In the above example, the CQuery element will have three subelements, one a CFilter
on the C class to eliminate C instances that do not satisfy the predicate of the CFilter,
another a YFilter on the Y class to eliminate branches from C to Y where the target of
the association does not satisfy the YFilter, and a third to eliminate branches along a
path from C through Z to V. The third element is called a branch element because it
allows class filters on each class along the path from X to V. In general, a branch
element will have subelements that are themselves class filters, other branch elements,
or a full-blown query on the terminal class in the path.

If an association from a class C to a class Y is one-to-zero or one-to-one, then at most
one branch or filter element on Y is allowed. However, if the association is one-to-many,
then multiple filter or branch elements are allowed. This allows one to specify that an
instance of C must have associations with multiple instances of Y before the instance of
C is said to satisfy the branch element.

The FilterQuery syntax is tied to the structures defined in ebRIM. Since ebRIM is
intended to be stable, the FilterQuery syntax is stable. However, if new structures are
added to the ebRIM, then the FilterQuery syntax and semantics can be extended at the
same time.

Support for FilterQuery is required of every conforming ebXML Registry implementation,
but other query options are possible. The Registry will hold a self-describing CPP that
identifies all supported AdhocQuery options. This profile is described in Section 6.1.

The ebRIM Binding paragraphs in Sections 8.2.2 through 8.2.6 below identify the virtual
hierarchy for each FilterQuery alternative. The Semantic Rules for each query
alternative specify the effect of that binding on query semantics.

The ReturnRegistryEntry and ReturnRepositoryltem services defined below provide a
way to structure an XML document as an expansion of the result of a
RegistryEntryQuery. The ReturnRegistryEntry element specified in Section 8.2.7 allows
one to specify what metadata one wants returned with each registry entry identified in
the result of a RegistryEntryQuery. The ReturnRepositoryltem specified in Section
8.2.8 allows one to specify what repository items one wants returned based on their
relationships to the registry entries identified by the result of a RegistryEntryQuery.

ebXML Registry Services Specification Page 33

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

ebXML Registry May 2001

941 8.2.1 FilterQuery

942 Purpose

943 To identify a set of registry instances from a specific registry class. Each alternative
944 assumes a specific binding to ebRIM. The query result for each query alternative is a
945 set of references to instances of the root class specified by the binding. The status is a
946 success indication or a collection of warnings and/or exceptions.

947 Definition

948

949 <I ELEMENT FilterQuery

950 (Regi stryEntryQuery

951 | Auditabl eEvent Query

952 | Classificati onNodeQuery

953 | RegistryPackageQuery

954 | OrganizationQuery) >
955

956 <! ELEMENT FilterQueryResult

957 (Regi stryEntryQuer yResul t

958 Audi t abl eEvent Quer yResul t
959 Cl assi ficati onNodeQueryResul t

|
960 | RegistryPackageQueryResult
I

961 Or gani zati onQuer yResul t) >

962

963 <! ELEMENT Regi stryEntryQueryResult (RegistryEntryView)>
964

965 <! ELEMENT Regi stryEntryVi ew EMPTY >

966 <I ATTLI ST Regi stryEntryVi ew

967 obj ect URN CDATA #REQUI RED

968 cont ent URI CDATA #| MPLI ED

969 obj ect| D CDATA #1 MPLI ED >

970

971 <! ELEMENT Audi t abl eEvent QueryResult (Auditabl eEvent Vi ew)>
972

973 <!l ELEMENT Audi t abl eEvent Vi ew EMPTY >

974 <I' ATTLI ST Audi t abl eEvent Vi ew

975 obj ect| D CDATA #REQUI RED

976 ti mestanp CDATA #REQUI RED >

977

978 <I ELEMENT Cl assificati onNodeQueryResul t

979 (Cl assificati onNodeVi ew) >

980

981 <l ELEMENT Cl assi fi cati onNodeVi ew EMPTY >

982 <I ATTLI ST Cl assi fi cati onNodeVi ew

983 obj ect URN CDATA #REQUI RED

984 cont ent URI CDATA #| MPLI ED

985 obj ect| D CDATA #| MPLI ED >

986

987 <! ELEMENT Regi stryPackageQueryResult (Regi stryPackageVi ew)>
988

989 <! ELEMENT Regi st ryPackageVi ew EMPTY >

990 <I ATTLI ST Regi stryPackageVi ew

ebXML Registry Services Specification Page 34

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

991
992
993
994
995
996
997
998
999
1000
1001
1002

1003

1004
1005

1006
1007
1008

1009
1010

1011
1012

1013
1014

1015
1016
1017
1018
1019

1020
1021
1022
1023
1024

1025

1026
1027

ebXML Registry May 2001

obj ect URN CDATA #REQUI RED
cont ent URI CDATA #| MPLI ED
obj ect|I D CDATA #! MPLIED >

<!l ELEMENT Organi zati onQueryResult (Organi zationVi ew)>

<l ELEMENT Or gani zationVi ew EMPTY >

<I ATTLI ST Organi zati onVi ew
or guURN CDATA #REQUI RED
obj ect|I D CDATA #| MPLIED >

Semantic Rules

1.

2.

The semantic rules for each FilterQuery alternative are specified in subsequent
subsections.

Each FilterQueryResult is a set of XML reference elements to identify each instance
of the result set. Each XML attribute carries a value derived from the value of an
attribute specified in the Registry Information Model as follows:

a) objectID is the value of the ID attribute of the RegistryObject class,
b) objectURN and orgURN are URN values derived from the object ID,

c) contentURI is a URL value derived from the contentURI attribute of the
RegistryEntry class,

d) timestamp is a literal value to represent the value of the timestamp attribute of
the AuditableEvent class.

If an error condition is raised during any part of the execution of a FilterQuery, then
the status attribute of the XML RegistryResult is set to “failure” and no query result
element is returned; instead, a RegistryErrorList element must be returned with its
highestSeverity element set to “error”. At least one of the RegistryError elements in
the RegistryErrorList will have its severity attribute set to “error”.

If no error conditions are raised during execution of a FilterQuery, then the status
attribute of the XML RegistryResult is set to “success” and an appropriate query
result element must be included. If a RegistryErrorList is also returned, then the
highestSeverity attribute of the RegistryErrorList is set to “warning” and the serverity
attribute of each RegistryError is set to “warning”.

ebXML Registry Services Specification Page 35

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

1027

1028

1029
1030

1031
1032

1033

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

ebXML Reg

istry

May 2001

8.2.2 RegistryEntryQuery

Purpose

To identify a set of registry entry instances as the result of a query over selected registry

metadata.

ebRIM Binding

Sowud

e

2

r

R

=

Taget

Slot

Fesocigion

Classificaion

Organization

Organization

Auditable
Evert

Aszocigdion

Teiyet

¥

¥

Uszer

Su:&ne

Registry
Entry

Classification
Mode

Contact

Contact

Definition

<! ELEMENT Regi stryEntryQuery
Regi stryEntryFil ter?,

Sour ceAssoci ati onBranch*,

Tar get Associ ati onBranch*,

HasCl assi fi cati onBranch*,

Submi tti ngOrgani zati onBranch?,

Responsi bl eOrgani zati onBranch?,
External IdentifierFilter*,

Ext ernal Li nkFilter*,
SlotFilter*,

(

HasAudi t abl eEvent Br anch*

<! ELEMENT Sour ceAssoci ati onBranch
Associ ationFilter?,
Regi stryEntryFilter?

(

<! ELEMENT Tar get Associ ati onBranch
Associ ationFilter?
Regi stryEntryFilter?

(

<! ELEMENT HasCl assificati onBranch
ClassificationFilter?,
Cl assificationNodeFilter?

(

ebXML Registry Services Specification

¥

Organization

) >

) >

) >

) >

Registry
Ertry

Page 36

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071

1072

1073
1074
1075

1076
1077
1078

1079
1080
1081
1082

1083
1084
1085
1086
1087
1088
1089
1090
1091

1092
1093
1094
1095

ebXML Registry May 2001

<l

<!

<I

ELEMENT Subm tti ngOrgani zati onBranch
(Organi zationFil ter?,
ContactFilter?) >

ELEMENT Responsi bl eOrgani zati onBranch
(Organi zationFil ter?,
ContactFilter?) >

ELEMENT HasAudi t abl eEvent Branch
(Audi t abl eEventFilter?,
UserFilter?,
Organi zationFilter?) >

Semantic Rules

1. Let RE denote the set of all persistent RegistryEntry instances in the Registry. The
following steps will eliminate instances in RE that do not satisfy the conditions of the
specified filters.

a)

b)

If a RegistryEntryFilter is not specified, or if RE is empty, then continue below;
otherwise, let x be a registry entry in RE. If x does not satisfy the
RegistryEntryFilter as defined in Section 8.2.9, then remove x from RE.

If a SourceAssociationBranch element is not specified, or if RE is empty, then
continue below; otherwise, let x be a remaining registry entry in RE. If x is not the
source object of some Association instance, then remove x from RE; otherwise,
treat each SourceAssociationBranch element separately as follows:

If no AssociationFilter is specified within SourceAssociationBranch, then let AF
be the set of all Association instances that have x as a source object; otherwise,
let AF be the set of Association instances that satisfy the AssociationFilter and
have x as the source object. If AF is empty, then remove x from RE. If no
RegistryEntryFilter is specified within SourceAssociationBranch, then let RET be
the set of all RegistryEntry instances that are the target object of some element
of AF; otherwise, let RET be the set of RegistryEntry instances that satisfy the
RegistryEntryFilter and are the target object of some element of AF. If RET is
empty, then remove x from RE.

If a TargetAssociationBranch element is not specified, or if RE is empty, then
continue below; otherwise, let x be a remaining registry entry in RE. If x is not the
target object of some Association instance, then remove x from RE; otherwise,
treat each TargetAssociationBranch element separately as follows:

ebXML Registry Services Specification Page 37

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

1096
1097
1098
1099
1100
1101
1102
1103
1104

1105
1106
1107
1108

1109
1110
1111
1112
1113
1114
1115
1116
1117
1118

1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130

ebXML Registry May 2001

d)

If no AssociationFilter is specified within TargetAssociationBranch, then let AF be
the set of all Association instances that have x as a target object; otherwise, let
AF be the set of Association instances that satisfy the AssociationFilter and have
x as the target object. If AF is empty, then remove x from RE. If no
RegistryEntryFilter is specified within TargetAssociationBranch, then let RES be
the set of all RegistryEntry instances that are the source object of some element
of AF; otherwise, let RES be the set of RegistryEntry instances that satisfy the
RegistryEntryFilter and are the source object of some element of AF. If RES is
empty, then remove x from RE.

If a HasClassificationBranch element is not specified, or if RE is empty, then
continue below; otherwise, let x be a remaining registry entry in RE. If X is not the
source object of some Classification instance, then remove x from RE; otherwise,
treat each HasClassificationBranch element separately as follows:

If no ClassificationFilter is specified within the HasClassificationBranch, then let
CL be the set of all Classification instances that have x as a source object;
otherwise, let CL be the set of Classification instances that satisfy the
ClassificationFilter and have x as the source object. If CL is empty, then remove
x from RE. If no ClassificationNodeFilter is specified within
HasClassificationBranch, then let CN be the set of all ClassificationNode
instances that are the target object of some element of CL; otherwise, let CN be
the set of RegistryEntry instances that satisfy the ClassificationNodeFilter and
are the target object of some element of CL. If CN is empty, then remove x from
RE.

If a SubmittingOrganizationBranch element is not specified, or if RE is empty,
then continue below; otherwise, let x be a remaining registry entry in RE. If X
does not have a submitting organization, then remove x from RE. If no
OrganizationFilter is specified within SubmittingOrganizationBranch, then let SO
be the set of all Organization instances that are the submitting organization for x;
otherwise, let SO be the set of Organization instances that satisfy the
OrganizationFilter and are the submitting organization for x. If SO is empty, then
remove x from RE. If no ContactFilter is specified within
SubmittingOrganizationBranch, then let CT be the set of all Contact instances
that are the contacts for some element of SO; otherwise, let CT be the set of
Contact instances that satisfy the ContactFilter and are the contacts for some
element of SO. If CT is empty, then remove x from RE.

ebXML Registry Services Specification Page 38

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142

1143
1144
1145
1146

1147
1148

1149
1150
1151
1152

1153
1154

1155
1156
1157
1158

1159
1160

1161
1162
1163
1164

1165
1166
1167
1168
1169
1170
1171

ebXML Registry May 2001

)

9)

h)

)

If a ResponsibleOrganizationBranch element is not specified, or if RE is empty,
then continue below; otherwise, let x be a remaining registry entry in RE. If X
does not have a responsible organization, then remove x from RE. If no
OrganizationFilter is specified within ResponsibleOrganizationBranch, then let
RO be the set of all Organization instances that are the responsible organization
for x; otherwise, let RO be the set of Organization instances that satisfy the
OrganizationFilter and are the responsible organization for x. If RO is empty, then
remove X from RE. If no ContactFilter is specified within
SubmittingOrganizationBranch, then let CT be the set of all Contact instances
that are the contacts for some element of RO; otherwise, let CT be the set of
Contact instances that satisfy the ContactFilter and are the contacts for some
element of RO. If CT is empty, then remove x from RE.

If an ExternalLinkFilter element is not specified, or if RE is empty, then continue
below; otherwise, let x be a remaining registry entry in RE. If x is not linked to
some ExternalLink instance, then remove x from RE; otherwise, treat each
ExternalLinkFilter element separately as follows:

Let EL be the set of ExternalLink instances that satisfy the ExternalLinkFilter and
are linked to x. If EL is empty, then remove x from RE.

If an ExternalldentifierFilter element is not specified, or if RE is empty, then
continue below; otherwise, let x be a remaining registry entry in RE. If X is not
linked to some Externalldentifier instance, then remove x from RE; otherwise,
treat each ExternalldentifierFilter element separately as follows:

Let El be the set of Externalldentifier instances that satisfy the
ExternalldentifierFilter and are linked to x. If El is empty, then remove x from RE.

If a SlotFilter element is not specified, or if RE is empty, then continue below;
otherwise, let x be a remaining registry entry in RE. If x is not linked to some Slot
instance, then remove x from RE; otherwise, treat each SlotFilter element
separately as follows:

Let SL be the set of Slot instances that satisfy the SlotFilter and are linked to x. If
SL is empty, then remove x from RE.

If a HasAuditableEventBranch element is not specified, or if RE is empty, then
continue below; otherwise, let x be a remaining registry entry in RE. If X is not
linked to some AuditableEvent instance, then remove x from RE; otherwise, treat
each HasAuditableEventBranch element separately as follows:

If an AuditableEventFilter is not specified within HasAuditableEventBranch, then
let AE be the set of all AuditableEvent instances for x; otherwise, let AE be the
set of AuditableEvent instances that satisfy the AuditableEventFilter and are
auditable events for x. If AE is empty, then remove x from RE. If a UserFilter is
not specified within HasAuditableEventBranch, then let Al be the set of all User
instances linked to an element of AE; otherwise, let Al be the set of User
instances that satisfy the UserFilter and are linked to an element of AE.

ebXML Registry Services Specification Page 39

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

1172
1173
1174
1175
1176

1177
1178
1179

1180

1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197

1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216

ebXML Registry May 2001

If Al is empty, then remove x from RE. If an OrganizationFilter is not specified
within HasAuditableEventBranch, then let OG be the set of all Organization
instances that are linked to an element of Al; otherwise, let OG be the set of
Organization instances that satisfy the OrganizationFilter and are linked to an
element of Al. If OG is empty, then remove x from RE.

2. If RE is empty, then raise the warning: registry entry query result is empty.
3. Return RE as the result of the RegistryEntryQuery.

Examples

A client wants to establish a trading relationship with XYZ Corporation and wants to
know if they have registered any of their business documents in the Registry. The
following query returns a set of registry entry identifiers for currently registered items
submitted by any organization whose name includes the string "XYZ". It does not return
any registry entry identifiers for superceded, replaced, deprecated, or withdrawn items.

<Regi stryEntryQuery>
<Regi stryEntryFilter>
status EQUAL " Approved" -- code by Clause, Section 8.2.10
</ Regi stryEntryFilter>
<Submi tti ngOrgani zati onBranch>
<Organi zationFilter>
name CONTAI NS " XYZ" -- code by Clause, Section 8.2.10
</ Organi zationFilter>
</ Subm tti ngOr gani zat i onBr anch>
</ Regi stryEntryquery>

A client is using the United Nations Standard Product and Services Classification
(UNSPSC) scheme and wants to identify all companies that deal with products
classified as "Integrated circuit components”, i.e. UNSPSC code "321118". The client
knows that companies have registered their party profile documents in the Registry, and
that each profile has been classified by the products the company deals with. The
following query returns a set of registry entry identifiers for profiles of companies that
deal with integrated circuit components.

<Regi stryEntryQuery>
<Regi stryEntryFilter>
obj ect Type EQUAL " CPP" AND -- code by Clause, Section 8.2.10
status EQUAL " Approved"
</ Regi stryEntryFilter>
<HasCl assi fi cati onBranch>
<Cl assi fi cati onNodeFi |l ter>
i d STARTSW TH "urn: un: spsc: 321118" -- code by Clause, Section 8.2.10
</ Cl assificationNodeFilter>
<HasCl assi fi cati onBranch>
</ Regi stryEntryQuery>

ebXML Registry Services Specification Page 40

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

1217
1218
1219
1220
1221
1222

1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235

1236
1237
1238
1239

1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251

1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263

1264

ebXML Registry May 2001

A client application needs all items that are classified by two different classification
schemes, one based on "Industry” and another based on "Geography". Both schemes
have been defined by ebXML and are registered. The root nodes of each scheme are
identified by "urn:ebxml:cs:industry” and "urn:ebxml:cs:geography"”, respectively. The
following query identifies registry entries for all registered items that are classified by
"Industry/Automotive” and by "Geography/Asia/Japan”.

<Regi stryEntryQuery>
<HasCl assi fi cati onBranch>
<Cl assi fi cati onNodeFi |l ter>
i d STARTSW TH "urn: ebxm : cs:i ndustry" AND
path EQUAL "I ndustry/ Aut onotive" -- code by Clause, Section 8.2.10
</ Cl assi ficati onNodeFi |l ter>
<Cl assi fi cati onNodeFi |l ter>
i d STARTSW TH "ur n: ebxml : cs: geogr aphy” AND
pat h EQUAL " Geography/ Asi a/ Japan” -- code by Clause, Section 8.2.10
</ Cl assi ficati onNodeFi |l ter>
</ HasCl assi fi cati onBranch>
</ Regi stryEntryQuery>

A client application wishes to identify all registry Package instances that have a given
registry entry as a member of the package. The following query identifies all registry
packages that contain the registry entry identified by URN "urn:path:myitem" as a
member:

<Regi stryEntryQuery>
<Regi stryEntryFi |l ter>
obj ect Type EQUAL "Regi stryPackage" -- code by Clause, Section 8.2.10
</ Regi stryEntryFilter>
<Sour ceAssoci ati onBranch>
<Associ ationFilter> -- code by Clause, Section 8.2.10
associ ati onType EQUAL "HasMenber" AND
target Obj ect EQUAL "urn: path: nyitent
</ Associ ati onFilter>
</ Sour ceAssoci at i onBr anch>
</ Regi stryEntryQuery>

A client application wishes to identify all ClassificationNode instances that have some
given keyword as part of their name or description. The following query identifies all
registry classification nodes that contain the keyword "transistor" as part of their name
or as part of their description.

<Regi stryEntryQuery>
<Regi stryEntryFilter>
Obj ect Type="Cl assi fi cati onNode" AND
(name CONTAINS "transistor” OR -- code by Clause, Section 8.2.10
description CONTAINS "transistor")
</ Regi stryEntryFilter>
</ Regi stryEntryQuery>

ebXML Registry Services Specification Page 41

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

ebXML Registry May 2001

1264 8.2.3 AuditableEventQuery

1265 Purpose

1266 To identify a set of auditable event instances as the result of a query over selected
1267 registry metadata.

1268 ebRIM Binding

AuditableEvent

InvokledBy

RegistryEntry User

Organization

1269 Definition

1270

1271 <! ELEMENT Audi t abl eEvent Query
1272 (Audi t abl eEvent Fil ter?,
1273 Regi stryEntryQuery*,
1274 | nvokedByBr anch?) >
1275

1276 <! ELEMENT | nvokedByBr anch
1277 (UserFil ter?,

1278 Organi zati onQuery?) >
1279

1280 Semantic Rules
1281 1. Let AE denote the set of all persistent AuditableEvent instances in the Registry. The

1282 following steps will eliminate instances in AE that do not satisfy the conditions of the
1283 specified filters.
1284

ebXML Registry Services Specification Page 42

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

1285
1286
1287

1288
1289
1290

1291
1292

1293
1294

1295
1296
1297

1298
1299
1300
1301

1302
1303
1304

1305

1306
1307
1308
1309

1310
1311
1312
1313
1314
1315
1316

1317

1318
1319
1320
1321
1322

1323
1324
1325

ebXML Registry May 2001

a) If an AuditableEventFilter is not specified, or if AE is empty, then continue below;
otherwise, let x be an auditable event in AE. If x does not satisfy the
AuditableEventFilter as defined in Section 8.2.9, then remove x from AE.

b) If a RegistryEntryQuery element is not specified, or if AE is empty, then continue
below; otherwise, let x be a remaining auditable event in AE. Treat each
RegistryEntryQuery element separately as follows:

Let RE be the result set of the RegistryEntryQuery as defined in Section 8.2.2. If
X is not an auditable event for some registry entry in RE, then remove x from AE.

c) If an InvokedByBranch element is not specified, or if AE is empty, then continue
below; otherwise, let x be a remaining auditable event in AE.

Let u be the user instance that invokes x. If a UserFilter element is specified within the
InvokedByBranch, and if u does not satisfy that filter, then remove x from AE; otherwise,
continue below.

If an OrganizationQuery element is not specified within the InvokedByBranch,
then continue below; otherwise, let OG be the set of Organization instances that
are identified by the organization attribute of u and are in the result set of the
OrganizationQuery. If OG is empty, then remove x from AE.

2. If AE is empty, then raise the warning: auditable event query result is empty.
3. Return AE as the result of the AuditableEventQuery.

Examples

A Registry client has registered an item and it has been assigned a URN identifier
"urn:path:myitem”. The client is now interested in all events since the beginning of the
year that have impacted that item. The following query will return a set of
AuditableEvent identifiers for all such events.

<Audi t abl eEvent query>
<Audi t abl eEventFil ter >
ti mestanp GE "2001-01-01" AND -- code by Clause, Section 8.2.10
regi stryEntry EQUAL "urn: path: nyitent
</ Audi t abl eEvent Fil ter>
</ Audi t abl eEvent Query>

A client company has many registered objects in the Registry. The Registry allows
events submitted by other organizations to have an impact on your registered items,
e.g. new classifications and new associations. The following query will return a set of
identifiers for all auditable events, invoked by some other party, that had an impact on
an item submitted by “myorg” and for which “myorg” is the responsible organization.

<Audi t abl eEvent Query>
<Regi stryEntryQuery>
ebXML Registry Services Specification Page 43

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344

1345

ebXML Registry

May 2001

<Subni tti ngOrgani zati onBranch>
<Organi zationFilter>
i d EQUAL "urn:sonepat h: nyorg"
</ Organi zationFilter>
</ SubmittingOrgani zati onBranch>
<Responsi bl eOr gani zati onBranch>
<Organi zationFil ter>
i d EQUAL "urn:sonepat h: myorg"
</ Organi zationFilter>
</ Responsi bl eOrgani zati onBr anch>
</ Regi stryEntryQuery>
<l nvokedByBr anch>
<Organi zati onQuery>
<Organi zationFilter>
id -EQUAL "urn:sonepath: nmyorg"
</ Organi zationFilter>
</ Organi zati onQuery>
</ I nvokedByBr anch>
</ Audi t abl eEvent Query>

ebXML Registry Services Specification

-- code by Clause, Section 8.2.10

-- code by Clause, Section 8.2.10

-- code by Clause, Section 8.2.10

Page 44

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

ebXML Registry May 2001

1345 8.2.4 ClassificationNodeQuery

1346 Purpose

1347 To identify a set of classification node instances as the result of a query over selected
1348 registry metadata.

1349 ebRIM Binding

ClassificationNode

PermitsClassification
HasSubnode

Classification HasParentNode

ClassificationNode

A 4

ClassificationNode

RegistryEntry

1350 Definition
1351
1352 <l ELEMENT d assi fi cati onNodeQuery
1353 (ClassificationNodeFilter?,
1354 Perm t sCl assi fi cati onBranch*,
1355 HasPar ent Node?,
1356 HasSubnode*) >
1357
1358 <I ELEMENT PernitsCl assificationBranch
1359 (ClassificationFilter?,
1360 Regi stryEntryQuery?) >
1361
1362 <! ELEMENT HasPar ent Node
1363 (ClassificationNodeFilter?,
1364 HasPar ent Node?) >
1365
1366 <! ELEMENT HasSubnode
1367 (Classificati onNodeFilter?,
1368 HasSubnode*) >
1369
1370

ebXML Registry Services Specification Page 45

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

ebXML Registry May 2001

1371 Semantic Rules

1372 1. Let CN denote the set of all persistent ClassificationNode instances in the Registry.

1373 The following steps will eliminate instances in CN that do not satisfy the conditions of
1374 the specified filters.
1375 a) If a ClassificationNodeFilter is not specified, or if CN is empty, then continue
1376 below; otherwise, let x be a classification node in CN. If x does not satisfy the
1377 ClassificationNodeFilter as defined in Section 8.2.9, then remove x from AE.
1378 b) If a PermitsClassificationBranch element is not specified, or if CN is empty, then
1379 continue below; otherwise, let x be a remaining classification node in CN. If X is
1380 not the target object of some Classification instance, then remove x from CN;
1381 otherwise, treat each PermitsClassificationBranch element separately as follows:
1382 If no ClassificationFilter is specified within the PermitsClassificationBranch
1383 element, then let CL be the set of all Classification instances that have x as the
1384 target object; otherwise, let CL be the set of Classification instances that satisfy
1385 the ClassificationFilter and have x as the target object. If CL is empty, then
1386 remove x from CN. If no RegistryEntryQuery is specified within the
1387 PermitsClassificationBranch element, thenlet RES be the set of all RegistryEntry
1388 instances that are the source object of some classification instance in CL;
1389 otherwise, let RE be the result set of the RegistryEntryQuery as defined in
1390 Section 8.2.2 and let RES be the set of all instances in RE that are the source
1391 object of some classification in CL. If RES is empty, then remove x from CN.
1392 c) If a HasParentNode element is not specified, or if CN is empty, then continue
1393 below; otherwise, let x be a remaining classification node in CN and execute the
1394 following paragraph with n=x.
1395 Let n be a classification node instance. If n does not have a parent node (i.e. if n
1396 is a root node), then remove x from CN. Let p be the parent node of n. If a
1397 ClassificationNodeFilter element is directly contained in HasParentNode and if p
1398 does not satisfy the ClassificationNodeFilter, then remove x from CN.
1399 If another HasParentNode element is directly contained within this
1400 HasParentNode element, then repeat the previous paragraph with n=p.
1401 d) If a HasSubnode element is not specified, or if CN is empty, then continue below;
1402 otherwise, let x be a remaining classification node in CN. If x is not the parent
1403 node of some ClassificationNode instance, then remove x from CN; otherwise,
1404 treat each HasSubnode element separately and execute the following paragraph
1405 with n = x.
1406 Let n be a classification node instance. If a ClassificationNodeFilter is not
1407 specified within the HasSubnode element then let CNC be the set of all
1408 classification nodes that have n as their parent node; otherwise, let CNC be the
1409 set of all classification nodes that satisfy the ClassificationNodeFilter and have n
1410 as their parent node. If CNC is empty then remove x from CN; otherwise, let y be
1411 an element of CNC and continue with the next paragraph.

ebXML Registry Services Specification Page 46

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

1412
1413
1414

1415
1416
1417

1418

1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431

1432

1433
1434
1435

1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446

1447

ebXML Registry May 2001

If the HasSubnode element is terminal, i.e. if it does not directly contain another
HasSubnode element, then continue below; otherwise, repeat the previous
paragraph with the new HasSubnode element and with n =y.

2. If CN is empty, then raise the warning: classification node query result is empty.

3. Return CN as the result of the ClassificationNodeQuery.

Examples

A client application wishes to identify all classification nodes defined in the Registry that
are root nodes and have a nhame that contains the phrase “product code” or the phrase
“product type”. Note: By convention, if a classification node has no parent (i.e. is a root
node), then the parent attribute of that instance is set to null and is represented as a
literal by a zero length string.

<Cl assi ficati onNodeQuery>
<Cl assificati onNodeFi |l ter>
(name CONTAI NS “product code” OR -- code by Clause, Section 8.2.10
name CONTAINS “product type”) AND
parent EQUAL **
</ Cl assi ficati onNodeFi |l ter>
</ Cl assi ficati onNodeQuery>

A client application wishes to identify all of the classification nodes at the third level of a
classification scheme hierarchy. The client knows that the URN identifier for the root
node is “urn:ebxml:cs:myroot”. The following query identifies all nodes at the second
level under “myroot” (i.e. third level overall).

<Cl assi fi cati onNodeQuery>
<HasPar ent Node>
<HasPar ent Node>
<Cl assi ficati onNodeFi | ter>
id EQ “urn:ebxm :cs:nmyroot” --code by Clause, Section 8.2.10
</ Cl assificationNodeFilter>
</ HasPar ent Node>
</ HasPar ent Node>
</ Cl assi fi cati onNodeQuery>

ebXML Registry Services Specification Page 47

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

1447

1448

1449
1450

1451

1452
1453
1454
1455
1456
1457
1458
1459

1460

1461

1462
1463
1464

1465
1466
1467

1468
1469
1470
1471
1472

1473

ebXML Registry May 2001

8.2.5 RegistryPackageQuery

Purpose

To identify a set of registry package instances as the result of a query over selected
registry metadata.

ebRIM Binding
Package
HasMember
RegistryEntry
Definition

<! ELEMENT Regi stryPackageQuery
(PackageFil ter?,
HasMenmber Br anch*) >

<! ELEMENT HasMember Br anch
(Regi stryEnt ryQuery?) >

Semantic Rules

1. Let RP denote the set of all persistent Package instances in the Registry. The
following steps will eliminate instances in RP that do not satisfy the conditions of the
specified filters.

a) If a PackageFilter is not specified, or if RP is empty, then continue below;
otherwise, let x be a package instance in RP. If x does not satisfy the
PackageFilter as defined in Section 8.2.9, then remove x from RP.

b) If a HasMemberBranch element is not directly contained in the
RegistryPackageQuery, or if RP is empty, then continue below; otherwise, let x
be a remaining package instance in RP. If x is an empty package, then remove x
from RP; otherwise, treat each HasMemberBranch element separately as
follows:

ebXML Registry Services Specification Page 48

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

1474
1475
1476
1477
1478
1479

1480
1481
1482

1483

1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496

1497

1498
1499
1500
1501
1502
1503

1504
1505
1506
1507
1508
1509

1510
1511
1512
1513
1514
1515

ebXML Registry May 2001

If a RegistryEntryQuery element is not directly contained in the
HasMemberBranch element, then let PM be the set of all RegistryEntry instances
that are members of the package x; otherwise, let RE be the set of RegistryEntry
instances returned by the RegistryEntryQuery as defined in Section 8.2.2 and let
PM be the subset of RE that are members of the package x. If PM is empty, then
remove X from RP.

2. If RP is empty, then raise the warning: registry package query result is empty.
3. Return RP as the result of the RegistryPackageQuery.

Examples

A client application wishes to identify all package instances in the Registry that contain
an Invoice extrinsic object as a member of the package.

<Regi st ryPackageQuery>
<HasMenber Br anch>
<Regi stryEntryQuery>
<Regi stryEntryFilter>
obj ect Type EQ “Invoi ce” -- code by Clause, Section 8.2.10
</ Regi stryEntryFilter>
</ Regi stryEntryQuery>
</ HasMenber Br anch>
</ Regi st ryPackageQuery>

A client application wishes to identify all package instances in the Registry that are not
empty.

<Regi stryEntryQuery>
<HasMenber Br anch/ >
</ Regi stryEntryQuery>

A client application wishes to identify all package instances in the Registry that are
empty. Since the RegistryPackageQuery is not set up to do negations, clients will have
to do two separate RegistryPackageQuery requests, one to find all packages and
another to find all nonrempty packages, and then do the set difference themselves.
Alternatively, they could do a more complex RegistryEntryQuery and check that the
packaging association between the package and its members is non-existent.

Note: A registry package is an intrinsic RegistryEntry instance that is completely
determined by its associations with its members. Thus a RegistryPackageQuery can
always be re-specified as an equivalent RegistryEntryQuery using appropriate “Source”
and “Target” associations. However, the equivalent RegistryEntryQuery is often more
complicated to write.

ebXML Registry Services Specification Page 49

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

ebXML Registry May 2001

1515 8.2.6 OrganizationQuery

1516 Purpose

1517 To identify a set of organization instances as the result of a query over selected registry
1518 metadata.

1519 ebRIM Binding

Organization L

Submits
Invokeslkvent Contact
HagParent
RegistryEntry
User
Organization L
AuditableEvent
RegistryEntry
1520
1521 Definition
1522
1523 <!l ELEMENT Organi zati onQuery
1524 (Organi zationFilter?,
1525 Submni t sRegi stryEntry*,
1526 HasPar ent Or gani zat i on?,
1527 I nvokesEvent Branch*,
1528 ContactFilter) >
1529
1530 <! ELEMENT SubnitsRegi stryEntry (RegistryEntryQuery?)>
1531
1532 <! ELEMENT HasPar ent Or gani zati on
1533 (Organi zationFil ter?,
1534 HasPar ent Or gani zati on?) >
1535
1536 <I ELEMENT | nvokesEvent Branch
1537 (UserFilter?,
1538 Audi t abl eEvent Fil ter?,
1539 Regi stryEntryQuery?) >
ebXML Registry Services Specification Page 50

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

1540

1541
1542
1543

1544
1545
1546
1547

1548
1549
1550

1551
1552
1553
1554
1555
1556

1557
1558
1559

1560
1561
1562
1563
1564

1565
1566

1567
1568
1569

1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580

ebXML Registry May 2001

Semantic Rules

1. Let ORG denote the set of all persistent Organization instances in the Registry. The
following steps will eliminate instances in ORG that do not satisfy the conditions of
the specified filters.

a)

b)

d)

If an OrganizationFilter element is not directly contained in the
OrganizationQuery element, or if ORG is empty, then continue below; otherwise,
let x be an organization instance in ORG. If x does not satisfy the
OrganizationFilter as defined in Section 8.2.9, then remove x from RP.

If a Sub mitsRegistryEntry element is not specified within the OrganizationQuery,
or if ORG is empty, then continue below; otherwise, consider each
SubmitsRegistryEntry element separately as follows:

If no RegistryEntryQuery is specified within the SubmitsRegistryE ntry element,
then let RES be the set of all RegistryEntry instances that have been submitted
to the Registry by organization x; otherwise, let RE be the result of the
RegistryEntryQuery as defined in Section 8.2.2 and let RES be the set of all
instances in RE that have been submitted to the Registry by organization x. If
RES is empty, then remove x from ORG.

If a HasParentOrganization element is not specified within the
OrganizationQuery, or if ORG is empty, then continue below; otherwise, execute
the following paragraph with o = x:

Let o be an organization instance. If an OrganizationFilter is not specified within
the HasParentOrganization and if o has no parent (i.e. if o is a root organization
in the Organization hierarchy), then remove x from ORG; otherwise, let p be the
parent organization of o. If p does not satisfy the OrganizationFilter, then remove
x from ORG.

If another HasParentOrganization element is directly contained within this
HasParentOrganization ele ment, then repeat the previous paragraph with o = p.

If an InvokesEventBranch element is not specified within the OrganizationQuery,
or if ORG is empty, then continue below; otherwise, consider each
InvokesEventBranch element separately as follows:

If an UserFilter is not specified, and if x is not the submitting organization of some
AuditableEvent instance, then remove x from ORG. If an AuditableEventFilter is
not specified, then let AE be the set of all AuditableEvent instances that have x
as the submitting organization; otherwise, let AE be the set of AuditableEvent
instances that satisfy the AuditableEventFilter and have x as the submitting
organization. If AE is empty, then remove x from ORG. If a RegistryEntryQuery is
not specified in the InvokesEventBranch element, then let RES be the set of all
RegistryEntry instances associated with an event in AE; otherwise, let RE be the
result set of the RegistryEntryQuery, as specified in Section 8.2.2, and let RES
be the subset of RE of entries submitted by x. If RES is empty, then remove x
from ORG.

ebXML Registry Services Specification Page 51

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

1581
1582
1583

1584
1585

1586
1587
1588

1589

1590
15901
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609

1610

1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622

1623

ebXML Registry May 2001

e) If a ContactFilter is not specified within the OrganizationQuery, or if ORG is
empty, then continue below; otherwise, consider each ContactFilter separately as
follows:

Let CT be the set of Contact instances that satisfy the ContactFilter and are the
contacts for organization x. If CT is empty, then remove x from ORG.

2. If ORG is empty, then raise the warning: organization query result is empty.
3. Return ORG as the result of the OrganizationQuery.

Examples

A client application wishes to identify a set of organizations, based in France, that have
submitted a PartyProfile extrinsic object this year.

<Organi zati onQuery>
<Organi zationFilter>
country EQUAL “France” -- code by Clause, Section 8.2.10
</ Organi zationFilter>
<Submi t sRegi stryEntry>
<Regi stryEntryQuery>
<Regi stryEntryFil ter>
obj ect Type EQUAL “CPP” --code by Clause, Section 8.2.10
</ Regi stryEntryFilter>
<HasAudi t abl eEvent Br anch>
<Audi t abl eEvent Fi | ter >
ti mestanp GE “2001-01-01" --code by Clause, Section 8.2.10
</ Audi t abl eEventFil ter>
</ HasAudi t abl eEvent Br anch>
</ Regi stryEntryQuery>
</ Submi t sRegi stryEntry>
</ Organi zati onQuery>

A client application wishes to identify all organizations that have XYZ, Corporation as a
parent. The client knows that the URN for XYZ, Corp. is urn:ebxml:org:xyz, but there is
no guarantee that subsidiaries of XYZ have a URN that uses the same format, so a full
query is required.

<Organi zati onQuery>
<HasPar ent Or gani zat i on>
<Organi zationFilter>
id EQUAL “urn:ebxnml :org: xyz” -- code by Clause, Section 8.2.10
</ Organi zationFilter>
</ HasPar ent Or gani zat i on>
</ Organi zati onQuery>

ebXML Registry Services Specification Page 52

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

1623

1624

1625
1626
1627

1628

1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656

1657

1658
1659
1660

1661
1662
1663
1664
1665

ebXML Registry May 2001

8.2.7 ReturnRegistryEntry

Purpose

To construct an XML document that contains selected registry metadata associated with
the registry entries identified by a RegistryEntryQuery. NOTE: Initially, the
RegistryEntryQuery could be the URN identifier for a single registry entry.

Definition

<! ELEMENT ReturnRegi stryEntry
(Regi stryEntryQuery,
Wt hCl assi fications?,
W t hSour ceAssoci ati ons?,
W t hTar get Associ ati ons?,
Wt hAudi t abl eEvent s?,
W t hExt er nal Li nks?) >

<l ELEMENT WthC assifications (CassificationFilter?)>
<! ELEMENT Wt hSour ceAssoci ations (AssociationFilter?)>
<!l ELEMENT Wt hTarget Associ ations (AssociationFilter?)>
<!l ELEMENT Wt hAuditabl eEvents (Auditabl eEventFilter?)>
<!l ELEMENT Wt hExternal Links (ExternalLinkFilter?)>

<! ELEMENT Ret urnRegi stryEntryResul t
(RegistryEntryMetadata*)>

<! ELEMENT Regi stryEntryMet adat a
(RegistryEntry,
Cl assification*,
Sour ceAssoci ati ons?,
Tar get Associ ati ons?,
Audi t abl eEvent *,
Ext er nal Li nk*) >

<! ELEMENT Sour ceAssoci ati ons (Associ ati on*)>
<! ELEMENT Tar get Associ ati ons (Associ ation*)>

Semantic Rules

1. The RegistryEntry, Classification, Association, AuditableEvent, and ExternalLink
elements contained in the ReturnRegistryEntryResult are defined by the ebXML
Registry DTD specified in Appendix A.

2. Execute the RegistryEntryQuery according to the Semantic Rules specified in
Section 8.2.2, and let R be the result set of identifiers for registry entry instances. Let
S be the set of warnings and errors returned. If any elementin S is an error
condition, then stop execution and return the same set of warnings and errors along
with the ReturnRegistryEntryResult.

ebXML Registry Services Specification Page 53

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

1666
1667
1668
1669

1670
1671
1672
1673

1674
1675
1676
1677

1678
1679
1680
1681
1682
1683

1684
1685
1686
1687
1688
1689
1690

1691
1692
1693
1694
1695
1696
1697

1698
1699
1700
1701
1702
1703

ebXML Registry May 2001

3.

If the set R is empty, then do not return a RegistryEntryMetadata subelement in the
ReturnRegistryEntryResult. Instead, raise the warning: no resulting registry entry.
Add this warning to the error list returned by the RegistryEntryQuery and return this
enhanced error list with the ReturnRegistryEntryResult.

For each registry entry E referenced by an element of R, use the attributes of E to
create a new RegistryEntry element as defined in Appendix A. Then create a new
RegistryEntryMetadata element as defined above to be the parent element of that
RegistryEntry element.

If no With option is specified, then the resulting RegistryEntryMetadata element has
no Classification, SourceAssociations, TargetAssociations, AuditableEvent, or
ExternalData subelements. The set of RegistryEntryMetadata elements, with the
Error list from the RegistryEntryQuery, is returned as the ReturnRegistryEntryResult.

If WithClassifications is specified, then for each E in R do the following: If a
ClassificationFilter is not present, then let C be any classification instance linked to
E; otherwise, let C be a classification instance linked to E that satisfies the
ClassificationFilter (Section 8.2.9). For each such C, create a new Classification
element as defined in Appendix A. Add these Classification elements to their parent
RegistryEntryMetadata element.

If WithSourceAssociations is specified, then for each E in R do the following: If an
AssociationFilter is not present, then let A be any association instance whose source
object is E; otherwise, let A be an association instance that satisfies the
AssociationFilter (Section 8.2.9) and whose source object is E. For each such A,
create a new Association element as defined in Appendix A. Add these Association
elements as subelements of the WithSourceAssociations and add that element to its
parent RegistryEntryMetadata element.

If WithTargetAssociations is specified, then for each E in R do the following: If an
AssociationFilter is not present, then let A be any association instance whose target
object is E; otherwise, let A be an association instance that satisfies the
AssociationFilter (Section 8.2.9) and whose target object is E. For each such A,
create a new Association element as defined in Appendix A. Add these Association
elements as subelements of the WithTargetAssociations and add that element to its
parent RegistryEntryMetadata element.

If WithAuditableEvents is specified, then for each E in R do the following: If an
AuditableEventFilter is not present, then let A be any auditable event instance linked
to E; otherwise, let A be any auditable event instance linked to E that satisfies the
AuditableEventFilter (Section 8.2.9). For each such A, create a new AuditableEvent
element as defined in Appendix A. Add these AuditableEvent elements to their
parent RegistryEntryMetadata element.

ebXML Registry Services Specification Page 54

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

1704
1705
1706
1707
1708
1709

1710
1711

1712
1713

1714

1715

1716
1717
1718
1719
1720
1721

1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737

1738

1739
1740
1741
1742
1743
1744
1745
1746

1747

ebXML Registry May 2001

10.1f WithExternalLinks is specified, then for each E in R do the following: If an
ExternalLinkFilter is not present, then let L be any external link instance linked to E;
otherwise, let L be any external link instance linked to E that satisfies the
ExternalLinkFilter (Section 8.2.9). For each such D, create a new ExternalLink
element as defined in Appendix A. Add these ExternalLink elements to their parent
RegistryEntryMetadata element.

11.1f any warning or error condition results, then add the code and the message to the
RegistryResponse element that includes the RegistryEntryQueryResult.

12.Return the set of RegistryEntryMetadata elements as the content of the
ReturnRegistryEntryResult.

Examples

A customer of XYZ Corporation has been using a PurchaseOrder DTD registered by
XYZ some time ago. Its URN identifier is "urn:com:xyz:po:325". The customer wishes to
check on the current status of that DTD, especially if it has been superceded or
replaced, and get all of its current classifications. The following query request will return
an XML document with the registry entry for the existing DTD as the root, with all of its
classifications, and with associations to registry entries for any items that have
superceded or replaced it.

<Ret ur nRegi stryEntry>
<Regi stryEntryQuery>
<Regi stryEntryFi |l ter>
id EQUAL "urn:com xyz: po: 325" -- code by Clause, Section 8.2.10
</ RegistryEntryFilter>
</ Regi stryEntryQuery>
<WthC assifications/>
<W t hSour ceAssoci ati ons>
<Associ ationFilter> -- code by Clause, Section 8.2.10
associ ati onType EQUAL "SupercededBy" OR
associ ati onType EQUAL "Repl acedBy"
</ Associ ationFilter>
</ W t hSour ceAssoci ati ons>
</ ReturnRegi stryEntry>

A client of the Registry registered an XML DTD several years ago and is now thinking of
replacing it with a revised version. The identifier for the existing DTD is
"urn:xyz:dtd:po97". The proposed revision is not completely upward compatible with the
existing DTD. The client desires a list of all registered items that use the existing DTD
so they can assess the impact of an incompatible change. The following query returns
an XML document that is a list of all RegistryEntry elements that represent registered
items that use, contain, or extend the given DTD. The document also links each
RegistryEntry element in the list to an element for the identified association.

ebXML Registry Services Specification Page 55

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769

1770

1771
1772
1773
1774
1775

1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794

1795

ebXML Registry May 2001

<Ret ur nRegi stryEntry>
<Regi stryEntryQuery>
<Sour ceAssoci ati onBranch>
<Associ ationFilter> -- code by Clause, Section 8.2.10
associ ati onType EQUAL " Cont ai ns" OR
associ ationType EQUAL "Uses" OR
associ ati onType EQUAL "Extends"
</ Associ ationFilter>
<Regi stryEntryFilter> -- code by Clause, Section 8.2.10
id EQUAL "urn:xyz:dtd: po97"
</ Regi stryEntryFilter>
</ Sour ceAssoci at i onBr anch>
</ Regi stryEntryQuery>
<W t hSour ceAssoci ati ons>
<Associ ationFilter> -- code by Clause, Section 8.2.10
associ ati onType EQUAL "Cont ai ns" OR
associ ati onType EQUAL "Uses" OR
associ ati onType EQUAL "Extends"
</ Associ ationFilter>
</ W t hSour ceAssoci ati ons>
</ ReturnRegi stryEntry>

A user has been browsing the registry and has found a registry entry that describes a
package of core-components that should solve the user's problem. The package URN
identifier is "urn:com:cc:pkg:ccstuff". Now the user wants to know what's in the package.
The following query returns an XML document with a registry entry for each member of
the package along with that member's Uses and HasMemberBranch associations.

<Ret ur nRegi stryEntry>
<Regi stryEntryQuery>
<Tar get Associ ati onBranch>
<Associ ationFilter> -- code by Clause, Section 8.2.10
associ ati onType EQUAL "HasMenber™
</ Associ ationFilter>
<Regi stryEntryFilter> -- code by Clause, Section 8.2.10
id EQUAL " urn:comcc: pkg: ccstuff *
</ Regi stryEntryFilter>
</ Tar get Associ ati onBr anch>
</ Regi stryEntryQuery>
<W t hSour ceAssoci ati ons>
<Associ ationFilter> -- code by Clause, Section 8.2.10
associ ati onType EQUAL "HasMenber" OR
associ ati onType EQUAL "Uses"
</ Associ ationFilter>
</ W t hSour ceAssoci ati ons>
</ ReturnRegi stryEntry>

ebXML Registry Services Specification Page 56

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

ebXML Registry May 2001

1795 8.2.8 ReturnRepositoryltem

1796 Purpose

1797 To construct an XML document that contains one or more repository items, and some
1798 associated metadata, by submitting a RegistryEntryQuery to the registry/repository that
1799 holds the desired objects. NOTE: Initially, the RegistryEntryQuery could be the URN
1800 identifier for a single registry entry.

1801 Definition

1802
1803 <! ELEMENT ReturnRepositoryltem
1804 (RegistryEntryQuery,
1805 Recur si veAssoci ati onOpti on?,
1806 W t hDescri ption?) >
1807
1808 <! ELEMENT Recursi veAssoci ati onOption (Associ ati onType+)>
1809 <! ATTLI ST Recursi veAssoci ati onOpti on
1810 dept hLi m t CDATA #IMPLIED >
1811
1812 <! ELEMENT Associ ati onType EMPTY >
1813 <I ATTLI ST Associ ationType
1814 rol e CDATA #REQUI RED >
1815
1816 <l ELEMENT Wt hDescri pti on EMPTY >
1817
1818 <! ELEMENT Ret ur nRepositoryltenResult
1819 (Repositoryltent)>
1820
1821 <! ELEMENT Repositoryltem
1822 (Cl assi ficati onSchene
1823 | RegistryPackage
1824 | ExtrinsicObject
1825 | Wt hdrawnObj ect
1826 | External Li nkltem) >
1827 <! ATTLI ST Repositoryltem
1828 identifier CDATA #REQUI RED
1829 name CDATA #REQUI RED
1830 cont ent URI CDATA #REQUI RED
1831 obj ect Type CDATA #REQUI RED
1832 st at us CDATA #REQUI RED
1833 stability CDATA #REQUI RED
1834 descri ption CDATA #IMPLIED >
1835
1836 <l ELEMENT ExtrinsicObject (#PCDATA) >
1837 <I ATTLI ST Extrinsi cObj ect
1838 byt eEncodi ng CDATA "Base64" >
1839
1840 <!l ELEMENT Wt hdrawnQbj ect EMPTY >
1841
1842 <! ELEMENT Ext ernal Li nkltem EMPTY >
1843
1844

ebXML Registry Services Specification Page 57

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

1845

1846

1847
1848
1849
1850
1851
1852
1853
1854

1855
1856
1857

1858
1859

1860
1861
1862
1863
1864

1865
1866
1867
1868

1869
1870

1871
1872
1873

1874
1875
1876

1877
1878
1879

1880
1881
1882

ebXML Registry May 2001

Semantic Rules

1.

If the RecursiveOption element is not present , then set Limit=0. If the
RecursiveOption element is present, interpret its depthLimit attribute as an integer
literal. If the depthLimit attribute is not present, then set Limit = -1. A Limit of O
means that no recursion occurs. A Limit of -1 means that recursion occurs
indefinitely. If a depthLimit value is present, but it cannot be interpreted as a positive
integer, then stop execution and raise the exception: invalid depth limit; otherwise,
set Limit=N, where N is that positive integer. A Limit of N means that exactly N
recursive steps will be executed unless the process terminates prior to that limit.

Set Depth=0. Let Result denote the set of Repositoryltem elements to be returned
as part of the ReturnRepositoryltemResult. Initially Result is empty. Semantic rules
4 through 10 determine the content of Result.

If the WithDescription element is present, then set WSD="yes"; otherwise, set
WSD="no".

Execute the RegistryEntryQuery according to the Semantic Rules specified in
Section 8.2.2, and let R be the result set of identifiers for registry entry instances. Let
S be the set of warnings and errors returned. If any elementin S is an error
condition, then stop execution and return the same set of warnings and errors along
with the ReturnRepositoryltemResult.

Execute Semantic Rules 6 and 7 with X as a set of registry references derived from
R. After execution of these rules, if Depth is now equal to Limit, then return the
content of Result as the set of Repositoryltem elements in the
ReturnRepositoryltemResult element; otherwise, continue with Semantic Rule 8.

Let X be a set of RegistryEntry instances. For each registry entry E in X, do the
following:

a) If E.contentURI references a repository item in this registry/repository, then
create a new Repositoryltem element, with values for its attributes derived as
specified in Semantic Rule 7.

1) If E.objectType="ClassificationScheme", then put the referenced
ClassificationScheme DTD as the subelement of this Repositoryltem.
[NOTE: Requires DTD specification!]

2) If E.objectType="RegistryPackage", then put the referenced
RegistryPackage DTD as the subelement of this Repositoryltem. [NOTE:
Requires DTD specification!]

3) Otherwise, i.e., if the object referenced by E has an unknown internal
structure, then put the content of the repository item as the #PCDATA of a
new ExtrinsicObject subelement of this Repositoryltem.

ebXML Registry Services Specification Page 58

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

1883
1884
1885
1886

1887
1888
1889
1890

1891
1892
1893
1894
1895

1896
1897

1898
1899
1900

1901
1902

1903

1904
1905

1906

1907
1908

1909
1910
1911
1912
1913

1914
1915
1916
1917

1918

1919
1920
1921

ebXML Registry May 2001

b) If E.objectURL references a registered object in some other registry/repository,
then create a new Repositoryltem element, with values for its attributes derived
as specified in Semantic Rule 7, and create a new ExternalLink element as the
subelement of this Repositoryltem.

c) If E.objectURL is void, i.e. the object it would have referenced has been
withdrawn, then create a new Repositoryltem element, with values for its
attributes derived as specified in Semantic Rule 7, and create a new
WithdrawnObject element as the subelement of this Repositoryltem.

7. Let E be aregistry entry and let RO be the Repositoryltem element created in
Semantic Rule 6. Set the attributes of RO to the values derived from the
corresponding attributes of E. If WSD="yes", include the value of the description
attribute; otherwise, do not include it. Insert this new Repositoryltem element into the
Result set.

8. Let R be defined as in Semantic Rule 3. Execute Semantic Rule 9 with Y as the set
of RegistryEntry instances referenced by R. Then continue with Semantic rule 10.

9. LetY be a set of references to RegistryEntry instances. Let NextLevel be an empty
set of RegistryEntry instances. For each registry entry E in Y, and for each
AssociationType A of the RecursiveAssociationOption, do the following:

a) Let Z be the set of target items E' linked to E under association instances having
E as the source object, E' as the target object, and A as the AssociationType.

b) Add the elements of Z to NextLevel.

10.Let X be the set of new registry entries that are in NextLevel but are not yet
represented in the Result set.

Case:

a) If X is empty, then return the content of Result as the set of Repositoryltem
elements in the ReturnRepositoryltemResult element.

b) If X is not empty, then execute Semantic Rules 6 and 7 with X as the input set.
When finished, add the elements of X to Y and set Depth=Depth+1. If Depth is
now equal to Limit, then return the content of Result as the set of Repositoryltem
elements in the ReturnRepositoryltemResult element; otherwise, repeat
Semantic Rules 9 and 10 with the new set Y of registry entries.

11.1f any exception, warning, or other status condition results during the execution of
the above, then return appropriate RegistryError elements in the RegistryResult
associated with the ReturnRepositoryltemResult element created in Semantic Rule 5
or Semantic Rule 10.

Examples

A registry client has found a registry entry for a core-component item. The item's URN
identity is "urn:ebxml:cc:goodthing". But "goodthing" is a composite item that uses many
other registered items. The client desires the collection of all items needed for a

ebXML Registry Services Specification Page 59

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

1922
1923

1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936

1937
1938
1939
1940
1941

1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953

1954
1955
1956
1957

1958
1959
1960
1961
1962
1963
1964
1965

1966

1967
1968
1969
1970

ebXML Registry May 2001

complete implementation of "goodthing”. The following query returns an XML document
that is a collection of all needed items.

<Ret ur nRepositoryltenr
<Regi stryEntryQuery>
<Regi stryEntryFilter> -- code by Clause, Section 8.2.10
id EQUAL "urn:ebxm :cc: goodthing”
</ Regi stryEntryFilter>
</ Regi stryEntryQuery>
<Recur si veAssoci ati onOpti on>
<Associ ati onType role="Uses" /[>
<Associ ati onType rol e="ValidatesTo" />
</ Recur si veAssoci ati onOpti on>
</ Ret ur nReposi toryltemnm

A registry client has found a reference to a core-component routine
("urn:ebxml:cc:rtn:nice87") that implements a given business process. The client knows
that all routines have a required association to its defining UML specification. The
following query returns both the routine and its UML specification as a collection of two
items in a single XML document.

<Ret ur nRepositoryltenr
<Regi stryEntryQuery>
<Regi stryEntryFilter> -- code by Clause, Section 8.2.10
id EQUAL "urn:ebxm :cc:rtn:nice87"
</ Regi stryEntryFilter>
</ Regi stryEntryQuery>
<Recur si veAssoci ati onOpti on depthLimt="1" >
<Associ ati onType role="ValidatesTo" />
</ Recur si veAssoci ati onOpti on>
</ Ret urnRepositoryltenr

A user has been told that the 1997 version of the North American Industry Classification
System (NAICS) is stored in a registry with URN identifier "urn:nist:cs:naics-1997". The
following query would retrieve the complete classification scheme, with all 1810 nodes,
as an XML document that validates to a classification scheme DTD.

<Ret urnRepositoryltenr
<Regi stryEntryQuery>
<Regi stryEntryFilter> - - code by Clause, Section 8.2.10
id EQUAL "urn:nist:cs:naics-1997"
</ Regi stryEntryFilter>
</ Regi stryEntryQuery>
</ Ret urnReposi torylten>

Note: The ReturnRepositoryltemResult would include a single Repositoryltem that
consists of a ClassificationScheme document whose content is determined by the URL
ftp://xsun.sdct.itl.nist.gov/regrep/scheme/naics.txt.

ebXML Registry Services Specification Page 60

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

1970

1971
1972

1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003

2004

2005
2006

2007
2008
2009
2010
2011

2012
2013
2014

ebXML Registry

May 2001

8.2.9 Registry Filters

Purpose

To identify a subset of the set of all persistent instances of a given registry class.

Definition

<IELEMENT ObjectFilter (C ause)>

<!l ELEMENT Regi stryEntryFilter (Cl ause)>

<IELEMENT IntrinsicObjectFilter

<l ELEMENT ExtrinsicCbjectFilter

<! ELEMENT PackageFilter (Clause)>

<! ELEMENT Organi zationFilter (Clause)>
<l ELEMENT ContactFilter (Clause)>
<l ELEMENT Cl assi fi cati onNodeFilter
<! ELEMENT AssociationFilter (Clause)>

<l ELEMENT Cl assificationFilter (Clause)>
<! ELEMENT External Li nkFilter (Clause)>
<l ELEMENT ExternalldentifierFilter
<IELEMENT SlotFilter (C ause)>
<! ELEMENT Audi tabl eEventFilter (Clause)>

<l ELEMENT UserFilter (C ause)>

Semantic Rules

1. The Clause element is defined in Section 8.2.10, Clause.

(Clause)>

(Clause)>

) >

) >

2. For every ObjectFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the RegistryObject UML class
defined in [ebRIM]. If not, raise exception: object attribute error. The ObjectFilter
returns a set of identifiers for RegistryObject instances whose attribute values

evaluate to True for the Clause predicate.

3. For every RegistryEntryFilter XML element, the leftArgument attribute of any
containing SimpleClause shall identify a public attribute of the RegistryEntry UML

class defined in [ebRIM].

ebXML Registry Services Specification

Page 61

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

2015
2016
2017

2018
2019
2020
2021
2022

2023
2024
2025
2026
2027

2028
2029
2030
2031
2032

2033
2034
2035
2036
2037

2038
2039
2040
2041
2042

2043
2044
2045
2046
2047

2048
2049
2050
2051
2052

ebXML Registry May 2001

If not, raise exception: registry entry attribute error. The RegistryEntryFilter returns a
set of identifiers for RegistryEntry instances whose attribute values evaluate to True
for the Clause predicate.

4. For every IntrinsicObjectFilter XML element, the leftArgument attribute of any
containing SimpleClause shall identify a public attribute of the IntrinsicObject UML
class defined in [ebRIM]. If not, raise exception: intrinsic object attribute error. The
IntrinsicObjectFilter returns a set of identifiers for IntrinsicObject instances whose
attribute values evaluate to True for the Clause predicate.

5. For every ExtrinsicObjectFilter XML element, the leftArgument attribute of any
containing SimpleClause shall identify a public attribute of the ExtrinsicObject UML
class defined in [ebRIM]. If not, raise exception: extrinsic object attribute error. The
ExtrinsicObjectFilter returns a set of identifiers for ExtrinsicObject instances whose
attribute values evaluate to True for the Clause predicate.

6. For every PackageFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the Package UML class defined in
[ebRIM]. If not, raise exception: package attribute error. The PackageFilter returns a
set of identifiers for Package instances whose attribute values evaluate to True for
the Clause predicate.

7. For every OrganizationFilter XML element, the leftArgument attribute of any
containing SimpleClause shall identify a public attribute of the Organization or
PostalAddress UML classes defined in [ebRIM]. If not, raise exception: organization
attribute error. The OrganizationFilter returns a set of identifiers for Organization
instances whose attribute values evaluate to True for the Clause predicate.

8. For every ContactFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the Contact or PostalAddress UML
class defined in [ebRIM]. If not, raise exception: contact attribute error. The
ContactFilter returns a set of identifiers for Contact instances whose attribute values
evaluate to True for the Clause predicate.

9. For every ClassificationNodeFilter XML element, the leftArgument attribute of any
containing SimpleClause shall identify a public attribute of the ClassificationNode
UML class defined in [ebRIM]. If not, raise exception: classification node attribute
error. The ClassificationNodeFilter returns a set of identifiers for ClassificationNode
instances whose attribute values evaluate to True for the Clause predicate.

10.For every AssociationFilter XML element, the leftArgument attribute of any
containing SimpleClause shall identify a public attribute of the Association UML
class defined in [ebRIM]. If not, raise exception: association attribute error. The
AssociationFilter returns a set of identifiers for Association instances whose attribute
values evaluate to True for the Clause predicate.

ebXML Registry Services Specification Page 62

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

2053
2054
2055
2056
2057

2058
2059
2060
2061
2062

2063
2064
2065
2066
2067

2068
2069
2070
2071
2072

2073
2074
2075
2076
2077

2078
2079
2080
2081
2082

2083

2084

2085
2086
2087

2088
2089
2090
2091
2092
2093
2094
2095

ebXML Registry May 2001

11.For every ClassificationFilter XML element, the leftArgument attribute of any
containing SimpleClause shall identify a public attribute of the Classification UML
class defined in [ebRIM]. If not, raise exception: classification attribute error. The
ClassificationFilter returns a set of identifiers for Classification instances whose
attribute values evaluate to True for the Clause predicate.

12.For every ExternalLinkFilter XML element, the leftArgument attribute of any
containing SimpleClause shall identify a public attribute of the ExternalLink UML
class defined in [ebRIM]. If not, raise exception: external link attribute error. The
ExternalLinkFilter returns a set of identifiers for ExternalLink instances whose
attribute values evaluate to True for the Clause predicate.

13.For every ExternalldentiferFilter XML element, the leftArgument attribute of any
containing SimpleClause shall identify a public attribute of the Externalldentifier UML
class defined in [ebRIM]. If not, raise exception: external identifier attribute error. The
ExternalldentifierFilter returns a set of identifiers for Externalldentifier instances
whose attribute values evaluate to True for the Clause predicate.

14.For every SlotFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the Slot UML class defined in
[ebRIM]. If not, raise exception: slot attribute error. The SlotFilter returns a set of
identifiers for Slot instances whose attribute values evaluate to True for the Clause
predicate.

15.For every AuditableEventFilter XML element, the leftArgument attribute of any
containing SimpleClause shall identify a public attribute of the AuditableEvent UML
class defined in [ebRIM]. If not, raise exception: auditable event attribute error. The
AuditableEventFilter returns a set of identifiers for AuditableEvent instances whose
attribute values evaluate to True for the Clause predicate.

16.For every UserFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the User UML class defined in
[ebRIM]. If not, raise exception: auditable identity attribute error. The UserFilter
returns a set of identifiers for User instances whose attribute values evaluate to True
for the Clause predicate.

Example

The following is a complete example of RegistryEntryQuery combined with Clause
expansion of RegistryEntryFilter to return a set of RegistryEntry instances whose
objectType attibute is “CPP” and whose status attribute is “Approved”.

<Regi stryEntryQuery>
<Regi stryEntryFilter>
<Cl ause>
<ConpounddCl ause connecti vePredi cat e=" And" >
<Cl ause>
<Si npl eCl ause | eft Argunent ="obj ect Type" >
<StringCl ause stringPredicate="equal" >CPP</StringC ause>

ebXML Registry Services Specification Page 63

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107

2108

ebXML Registry May 2001

</ Si npl eCl ause>

</ Cl ause>

<Cl ause>
<Si npl eCl ause | eftArgunent ="status" >

<StringClause stringPredicate="equal" >Approved</StringCl ause>

</ Si npl eCl ause>

</ Cl ause>

</ ConpoundCl ause>
</ Cl ause>
</ Regi stryEntryFilter>
</ Regi stryEntryQuery>

ebXML Registry Services Specification Page 64

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

2108

2109

2110
2111
2112
2113

2114
2115

2116
2117

2118

2119
2120
2121

2122

ebXML Registry May 2001

8.2.10 XML Clause Constraint Representation

Purpose

The simple XML FilterQuery utilizes a formal XML structure based on Predicate
Clauses. Predicate Clauses are utilized to formally define the constraint mechanism,
and are referred to simply as Clauses in this specification.

Conceptual UML Diagram

The following is a conceptual diagram outlining the Clause base structure. Itis
expressed in UML for visual depiction.

<<XMLElement>>
Clause

.

<<XMLElement>>
SimpleClause <<XMLElement>>

——@| CompoundClause

<<XMLElement>> <<XMLElement>> <<XMLElement>>
StringClause BooleanClause RationalClause

S A

<<XMLElement>> <<XMLElement>>
IntClause FloatClause

Figure 20: The Clause base structure

Semantic Rules

Predicates and Arguments are combined into a "LeftArgument - Predicate -
RightArgument" format to form a Clause. There are two types of Clauses:
SimpleClauses and CompoundClauses.

SimpleClauses

ebXML Registry Services Specification Page 65

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

2123
2124
2125
2126

2127
2128
2129
2130
2131
2132
2133

2134

2135
2136

2137

2138

2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171

ebXML Registry May 2001

A SimpleClause always defines the leftArgument as a text string, sometimes referred to
as the Subject of the Clause. SimpleClause itself is incomplete (abstract) and must be
extended. SimpleClause is extended to support BooleanClause, StringClause, and
RationalClause (abstract).

BooleanClause implicitly defines the predicate as ‘equal to’, with the right argument as a
boolean. StringClause defines the predicate as an enumerated attribute of appropriate
string-compare operations and a right argument as the element’s text data. Rational
number support is provided through a common RationalClause providing an
enumeration of appropriate rational number compare operations, which is further
extended to IntClause and FloatClause, each with appropriate signatures for the right
argument.

CompoundClauses

A CompoundClause contains two or more Clauses (Simple or Compound) and a
connective predicate. This provides for arbitrarily complex Clauses to be formed.

Definition

<!l ELEMENT Cl ause (Si nmpl eCl ause | ConpoundCl ause) >

<!l ELEMENT Si npl eCl ause

(Bool eanCl ause | Rational Clause | StringCl ause)>
<I ATTLI ST Si npl eCl ause

| eft Argument CDATA #REQUI RED >

<! ELEMENT ConpoundCl ause (Cl ause, Cl ause+)>
<I ATTLI ST ConpoundCl ause
connectivePredicate (And | O) #REQUI RED>

<!l ELEMENT Bool eanCl ause EMPTY >
<! ATTLI ST Bool eanCl ause
bool eanPredi cate (True | Fal se) #REQUI RED>

<! ELEMENT Rational Cl ause (IntClause | FloatC ause)>
<l ATTLI ST Rati onal Cl ause
logical Predicate (LE| LT | GE| GI'| EQ| NE) #REQU RED >

<l ELEMENT I nt Cl ause (#PCDATA)
<I' ATTLI ST I ntCl ause
e-dtype NMIOKEN #FI XED '"int' >

<! ELEMENT Fl oat Cl ause (#PCDATA)>
<I ATTLI ST Fl oat Cl ause
e-dtype NMIOKEN #FI XED ' fl oat' >

<l ELEMENT StringCl ause (#PCDATA) >
<I ATTLI ST StringC ause
stringPredicate

(contains | -contains |
startswith | -startswith |
ebXML Registry Services Specification Page 66

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

2172
2173

2174

2175
2176

2177
2178
2179
2180
2181
2182
2183
2184
2185

2186

2187
2188
2189
2190
2191
2192
2193
2194
2195
2196

2197
2198

2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209

2210

2211
2212
2213
2214
2215
2216
2217
2218

ebXML Registry May 2001

equal | -equal
endswith | -endswith) #REQUI RED >

Examples

Simple BooleanClause: "Smoker" = True

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE Cl ause SYSTEM "C ause. dtd" >
<Cl ause>
<Si npl eCl ause | ef t Argunent =" Snoker " >
<Bool eanCl ause bool eanPredi cat e="True"/ >
</ Si npl eCl ause>
</ Cl ause>

Simple StringClause: "Smoker" contains "mo"

<?xm version="1.0" encodi ng="UTF-8"?>
<I DOCTYPE Cl ause SYSTEM "Cl ause. dtd" >
<Cl ause>
<Si npl eCl ause | ef t Ar gunent =" Snoker " >
<StringCl ause stringconparepredi cate="contai ns">
no
</ StringCl ause>
</ Si npl eCl ause>
</ Cl ause>

Simple IntClause: "Age" >= 7

<?xm version="1.0" encodi ng="UTF-8"?>
<I DOCTYPE Cl ause SYSTEM "Cl ause. dtd" >
<Cl ause>
<Si npl eCl ause | ef t Argunent =" Age" >
<Rat i onal Cl ause | ogi cal Predi cat e="GE" >
<IntCl ause e-dtype="int">7</1ntCl ause>
</ Rati onal Cl ause>
</ Si npl eCl ause>
</ Cl ause>

Simple FloatClause: "Size" = 4.3

<?xm version="1.0" encodi ng="UTF-8"?>
<I DOCTYPE Cl ause SYSTEM "Cl ause. dtd" >
<Cl ause>
<Si npl eCl ause | eft Argunent="Si ze" >
<Rat i onal Cl ause | ogi cal Predi cate="E">
<Fl oat Cl ause e-dtype="fl oat">4. 3</Fl oat Cl ause>
</ Rati onal Cl ause>

ebXML Registry Services Specification Page 67

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

2219
2220

2221
2222

2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241

2242
2243
2244

2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268

ebXML Registry May 2001

</ Si npl eCl ause>
</ Cl ause>

Compound with two Simples (("Smoker" = False)AND("Age" =< 45))

<?xm version="1.0" encodi ng="UTF-8"?>
<I DOCTYPE Cl ause SYSTEM "Cl ause. dtd" >
<Cl ause>
<ConpoundCl ause connecti vePredi cat e="And" >
<Cl ause>
<Si npl eCl ause | ef t Argunent =" Snoker " >
<Bool eanCl ause bool eanPredi cat e="Fal se"/ >
</ Si npl eCl ause>
</ Cl ause>
<Cl ause>
<Si npl eCl ause | ef t Argunent =" Age" >
<Rat i onal Cl ause | ogi cal Predi cat e="EL" >
<IntCl ause e-dtype="int">45</1ntCl ause>
</ Rati onal Cl ause>
</ Si npl eCl ause>
</ Cl ause>
</ ConpoundCl ause>
</ Cl ause>

Coumpound with one Simple and one Compound
(("Smoker" = False)And(("Age" =< 45)Or("American"=True)))

<?xm version="1.0" encodi ng="UTF-8"?>
<I DOCTYPE Cl ause SYSTEM "Cl ause. dtd" >
<Cl ause>
<ConpoundCl ause connecti vePredi cat e="And" >
<Cl ause>
<Si npl eCl ause | ef t Argunent =" Snoker " >
<Bool eanCl ause bool eanPr edi cat e="Fal se"/ >
</ Si npl eCl ause>
</ Cl ause>
<Cl ause>
<ConpoundCl ause connectivePredi cate="O">
<Cl ause>
<Si npl eCl ause | ef t Argunent =" Age" >
<Rat i onal Cl ause | ogi cal Predi cat e="EL" >
<IntCl ause e-dtype="int">45</1ntCl ause>
</ Rati onal Cl ause>
</ Si npl eCl ause>
</ Cl ause>
<Cl ause>
<Si npl eCl ause | ef t Argunent =" Aneri can" >
<Bool eanCl ause bool eanPredi cate="True"/ >
</ Si npl eCl ause>
</ Cl ause>

ebXML Registry Services Specification Page 68

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

2269
2270
2271
2272

2273

2274
2275
2276
2277

2278
2279
2280
2281
2282
2283

2284
2285

2286

2287
2288
2289

2290

2291
2292
2293

2294
2295

2296
2297
2298
2299

2300
2301
2302

2303
2304

ebXML Registry May 2001

</ ConpoundCl ause>
</ Cl ause>
</ ConpoundCl ause>
</ Cl ause>

8.3 SQL Query Support

The Registry may optionally support an SQL based query capability that is designed for
Registry clients that demand more complex query capability. The optional SQLQuery
element in the AdhocQueryRequest allows a client to submit complex SQL queries
using a declarative query language.

The syntax for the SQLQuery of the Registry is defined by a stylized use of a proper
subset of the “SELECT” statement of Entry level SQL defined by ISO/IEC 9075:1992,
Database Language SQL [SQL], extended to include <sqgl i nvoked routi nes>
(also known as stored procedures) as specified in ISO/IEC 9075-4 [SQL-PSM] and pre-
defined routines defined in template form in Appendix C.3. The exact syntax of the
Registry query language is defined by the BNF grammar in C.1.

Note that the use of a subset of SQL syntax for SQLQuery does not imply a requirement
to use relational databases in a Registry implementation.

8.3.1 SQL Query Syntax Binding To [ebRIM]

SQL Queries are defined based upon the query syntax in in Appendix C.1 and a fixed
relational schema defined in Appendix C.3. The relational schema is an algorithmic
binding to [ebRIM] as described in the following sections.

8.3.1.1 Interface and Class Binding

A subset of the Interface and class names defined in [ebRIM] map to table names that
may be queried by an SQL query. Appendix C.3 defines the names of the ebRIM
interfaces and classes that may be queried by an SQL query.

The algorithm used to define the binding of [ebRIM] classes to table definitions in
Appendix C.3 is as follows:

Only those classes and interfaces that have concrete instances are mapped to
relational tables. This results in intermediate interfaces in the inheritance
hierarchy, such as RegistryObject and IntrinsicObject, to not map to SQL tables.
An exception to this rule is RegistryEntry, which is defined next.

A special view called RegistryEntry is defined to allow SQL queries to be made
against RegistryEntry instances. This is the only interface defined in [ebRIM] that
does not have concrete instances but is queryable by SQL queries.

The names of relational tables are the same as the corresponding [ebRIM] class
or interface name. However, the name binding is case insensitive.

ebXML Registry Services Specification Page 69

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

2305
2306
2307
2308
2309
2310

2311
2312

2313
2314

2315

2316
2317
2318
2319

2320

2321
2322
2323
2324
2325

2326

2327
2328
2329
2330

2331

2332
2333

2334
2335

2336

2337

2338
2339
2340
2341

ebXML Registry May 2001

Each [ebRIM] class or interface that maps to a table in Appendix C.3 includes
column definitions in Appendix C.3 where the column definitions are based on a
subset of attributes defined for that class or interface in [ebRIM]. The attributes
that map to columns include the inherited attributes for the [ebRIM] class or
interface. Comments in Appendix C.3 indicate which ancestor class or interface
contributed which column definitions.

An SQLQuery against a table not defined in Appendix C.3 may raise an error condition:
InvalidQueryException.

The following sections describe the algorithm for mapping attributes of [ebRIM] to
SQLcolumn definitions.

8.3.1.2 Accessor Method To Attribute Binding

Most of the [ebRIM] interfaces methods are simple get methods that map directly to
attributes. For example the getName method on RegistryObject maps to a name
attribute of type String. Each get method in [ebRIM] defines the exact attribute name
that it maps to in the interface definitions in [ebRIM].

8.3.1.3 Primitive Attributes Binding

Attributes defined by [ebRIM] that are of primitive types (e.g. String) may be used in the
same way as column names in SQL. Again the exact attribute names are defined in the
interface definitions in [ebRIM]. Note that while names are in mixed case, SQL-92 is
case insensitive. It is therefore valid for a query to contain attribute names that do not
exactly match the case defined in [ebRIM].

8.3.1.4 Reference Attribute Binding

A few of the [ebRIM] interface methods return references to instances of interfaces or
classes defined by [ebRIM]. For example, the getAccessControlPolicy method of the
RegistryObject class returns a reference to an instance of an AccessControlPolicy
object.

In such cases the reference maps to the i d attribute for the referenced object. The

name of the resulting column is the same as the attribute name in [ebRIM] as defined by
8.3.1.3. The data type for the column is UUID as defined in Appendix C.3.

When a reference attribute value holds a null reference, it maps to a null value in the
SQL binding and may be tested with the <null specification> as defined by [SQL].

Reference attribute binding is a special case of a primitive attribute mapping.
8.3.1.5 Complex Attribute Binding

A few of the [ebRIM] interfaces define attributes that are not primitive types. Instead
they are of a complex type as defined by an entity class in [ebRIM]. Examples include
attributes of type TelephoneNumber, Contact, PersonName etc. in interface
Organization and class Contact.

ebXML Registry Services Specification Page 70

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

ebXML Registry May 2001

2342 The SQL query schema algorithmically maps such complex attributes as multiple

2343 primitive attributes within the parent table. The mapping simply flattens out the entity
2344 class attributes within the parent table. The attribute name for the flattened attributes
2345 are composed of a concatenation of attribute names in the refernce chain. For example
2346 Organization has a contact attribute of type Contact. Contact has an address attribute of
2347 type PostalAddress. PostalAddress has a String attribute named city. This city attribute
2348 will be named contact_address_city.

2349 8.3.1.6 Collection Attribute Binding

2350 A few of the [ebRIM] interface methods return a collection of references to instances of
2351 interfaces or classes defined by [ebRIM]. For example, the getPackages method of the
2352 ManagedObject class returns a Collection of references to instances of Packages that
2353 the object is a member of.

2354 Such collection attributes in [ebRIM] classes have been mapped to stored procedures in
2355 Appendix C.3 such that these stored procedures return a collection of i d attribute

2356 values. The returned value of these stored procedures can be treated as the result of a
2357 table sub-query in SQL.

2358 These stored procedures may be used as the right-hand-side of an SQL IN clause to
2359 test for membership of an object in such collections of references.

2360 8.3.2 Semantic Constraints On Query Syntax

2361 This section defines simplifying constraints on the query syntax that cannot be
2362 expressed in the BNF for the query syntax. These constraints must be applied in the
2363 semantic analysis of the query.

2364 1. Class names and attribute names must be processed in a case insensitive manner.
2365 2. The syntax used for stored procedure invocation must be consistent with the syntax

2366 of an SQL procedure invocation as specified by ISO/IEC 9075-4 [SQL/PSM].

2367 3. For this version of the specification, the SQL select column list consists of exactly
2368 one column, and must always be t.i d, where t is a table reference in the FROM
2369 clause.

2370 8.3.3 SQL Query Results

2371 The results of an SQL query is always an ObjectRefList as defined by the

2372 AdHocQueryResponse in 8.4. This means the result of an SQL query is always a
2373 collection of references to instances of a sub-class of the RegistryObject interface in
2374 [ebRIM]. This is reflected in a semantic constraint that requires that the SQL select
2375 column specified must always be ani d column in a table in Appendix C.3 for this
2376 version of the specification.

ebXML Registry Services Specification Page 71

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

2377

2378
2379
2380

2381
2382
2383
2384
2385
2386
2387
2388
2389

2390

2391
2392
2393
2394

2395
2396
2397

2398
2399
2400
2401
2402

2403

2404

2405

2406
2407
2408
2409

2410

2411

2412
2413

ebXML Registry May 2001

8.3.4 Simple Metadata Based Queries

The simplest form of an SQL query is based upon metadata attributes specified for a
single class within [ebRIM]. This section gives some examples of simple metadata
based queries.

For example, to get the collection of ExtrinsicObjects whose name contains the word
‘Acme’ and that have a version greater than 1.3, the following query predicates must be
supported:

SELECT id FROM Extrinsi cCbj ect WHERE name LI KE ‘ %cne% AND

maj or Version >= 1 AND

(maj orVersion >= 2 OR ninorVersion > 3);
Note that the query syntax allows for conjugation of simpler predicates into more
complex queries as shown in the simple example above.

8.3.5 RegistryEntry Queries

Given the central role played by the RegistryEntry interface in ebRIM, the schema for
the SQL query defines a special view called RegistryEntry that allows doing a
polymorphic query against all RegistryEntry instances regardless of their actual
concrete type or table name.

The following example is the same as Section 8.3.4 except that it is applied against all
RegistryEntry instances rather than just ExtrinsicObject instances. The result set will
include id for all qualifying RegistryEntry instances whose name contains the word

‘Acme’ and that have a version greater than 1.3.
SELECT id FROM Regi stryEntry WHERE nane LI KE ‘ %Acne% AND
obj ect Type = ‘Extrinsi cCoj ect’” AND
maj or Version >= 1 AND
(maj orVersion >= 2 OR minorVersion > 3)

8.3.6 Classification Queries
This section describes the various classification related queries that must be supported.

8.3.6.1 Identifying ClassificationNodes

Like all objects in [ebRIM], ClassificationNodes are identified by their ID. However, they
may also be identified as a path attribute that specifies an XPATH expression [XPT]
from a root classification node to the specified classification node in the XML document
that would represent the ClassificationNode tree including the said ClassificationNode.

8.3.6.2 Getting Root Classification Nodes

To get the collection of root ClassificationNodes the following query predicate must be

supported:
SELECT cn.id FROM O assificati onNode cn WHERE parent |S NULL

ebXML Registry Services Specification Page 72

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

2414
2415
2416

2417

2418
2419
2420
2421
2422

2423

2424
2425

2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437

2438
2439
2440
2441

2442
2443
2444

2445
2446

2447

2448

2449

2450

2451
2452

ebXML Registry May 2001

The above query returns all ClassificationNodes that have their parent attribute set to
null. Note that the above query may also specify a predicate on the name if a specific
root ClassificationNode is desired.

8.3.6.3 Getting Children of Specified ClassificationNode

To get the children of a ClassificationNode given the ID of that node the following style
of query must be supported:

SELECT cn.id FROM d assi fi cati onNode cn WHERE parent = <i d>

The above query returns all ClassificationNodes that have the node specified by <id> as
their parent attribute.

8.3.6.4 Getting Objects Classified By a ClassificationNode

To get the collection of ExtrinsicObjects classified by specified ClassificationNodes the
following style of query must be supported:

SELECT id FROM Extri nsi cObj ect
WHERE
id IN (SELECT cl assifiedCbj ect FROM O assification
WHERE
classificationNode I N (SELECT id FROM O assi fi cati onNode
WHERE path = ‘/ Geography/ Asi a/ Japan’))
AND
id IN (SELECT cl assifiedObj ect FROM d assi fication
WHERE
cl assificationNode | N (SELECT id FROM d assi fi cati onNode
WHERE path = ‘/Industry/Autonotive’))
The above query gets the collection of ExtrinsicObjects that are classified by the
Automotive Industry and the Japan Geography. Note that according to the semantics
defined for GetClassifiedObjectsRequest, the query will also contain any objects that

are classified by descendents of the specified ClassificationNodes.

8.3.6.5 Getting ClassificationNodes That Classify an Object
To get the collection of ClassificationNodes that classify a specified Object the following
style of query must be supported:

SELECT id FROM O assi fi cati onNode
WHERE id IN (Regi stryEntry_cl assifi cati onNodes(<i d>))

8.3.7 Association Queries

This section describes the various Association related queries that must be supported.
8.3.7.1 Getting All Association With Specified Object As Its Source

To get the collection of Associations that have the specified Object as its source, the

following query must be supported:
SELECT i d FROM Associ ati on WHERE sour ce(hj ect = <i d>

ebXML Registry Services Specification Page 73

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

2453

2454

2455
2456

2457

2458
2459

2460
2461

2462
2463

2464
2465
2466

2467
2468
2469

2470

2471
2472

2473
2474
2475
2476
2477

2478

2479

2480
2481

2482

2483

2484
2485
2486
2487
2488

2489

2490

2491
2492

ebXML Registry May 2001

8.3.7.2 Getting All Association With Specified Object As Its Target

To get the collection of Associations that have the specified Object as its target, the

following query must be supported:
SELECT id FROM Associ ati on WHERE t ar get Cbj ect = <i d>

8.3.7.3 Getting Associated Objects Based On Association Attributes

To get the collection of Associations that have specified Association attributes, the
following queries must be supported:

Select Associations that have the specified name.
SELECT id FROM Associ ati on WHERE nane = <nane>

Select Associations that have the specified source role name.
SELECT id FROM Associ ati on WHERE sour ceRol e = <rol eNanme>

Select Associations that have the specified target role name.
SELECT id FROM Associ ati on WHERE t ar get Rol e = <r ol eNanme>
Select Associations that have the specified association type, where association type is a

string containing the corresponding field name described in [ebRIM].
SELECT i d FROM Associ ati on WHERE
associ ati onType = <associ ati onType>

8.3.7.4 Complex Association Queries

The various forms of Association queries may be combined into complex predicates.
The following query selects Associations from an object with a specified id, that have

the sourceRole “buysFrom” and targetRole “sellsTo”:
SELECT i d FROM Associ ati on WHERE

source(oj ect = <id> AND

sourceRol e = ‘buysFromi AND

targetRole = ‘sellsTo

8.3.8 Package Queries

To find all Packages that a specified ExtrinsicObject belongs to, the following query is

specified:
SELECT id FROM Package WHERE i d | N (Regi stryEntry_packages(<i d>))

8.3.8.1 Complex Package Queries

The following query gets all Packages that a specified object belongs to, that are not

deprecated and where name contains "RosettaNet.”
SELECT i d FROM Package WHERE

id IN (Regi stryEntry_packages(<id>)) AND

nanme LI KE ‘ %RosettaNet % AND

status <> ‘ Deprecat ed

8.3.9 ExternalLink Queries

To find all ExternalLinks that a specified ExtrinsicObject is linked to, the following query

is specified:
SELECT id From External Link WHERE id I N (Regi stryEntry_external Li nks(<id>))

ebXML Registry Services Specification Page 74

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

2493

2494
2495

2496

2497

2498
2499
2500
2501
2502

2503

2504
2505

2506

2507

2508
2509
2510

2511
2512
2513
2514

2515

2516
2517

ebXML Registry May 2001

To find all ExtrinsicObjects that are linked by a specified ExternalLink, the following

guery is specified:
SELECT id From Extrinsi cObject WHERE id IN (Regi stryEntry_| i nkedOhj ect s(<i d>))

8.3.9.1 Complex ExternalLink Queries

The following query gets all ExternalLinks that a specified ExtrinsicObject belongs to,

that contain the word ‘legal’ in their description and have a URL for their externalURI.
SELECT id FROM Ext er nal Li nk WHERE

id IN (RegistryEntry_external Li nks(<i d>)) AND

description LIKE ‘% egal % AND

external URI LIKE ‘ %ttp://%

8.3.10 Audit Trail Queries

To get the complete collection of AuditableEvent objects for a specified ManagedObject,
the following query is specified:

SELECT id FROM AuditableEvent WHERE registryEntry = <id>

8.4 Ad Hoc Query Request/Response

A client submits an ad hoc query to the ObjectQueryManager by sending an
AdhocQueryRequest. The AdhocQueryRequest contains a sub-element that defines a
guery in one of the supported Registry query mechanisms.

The ObjectQueryManager sends an AdhocQueryResponse either synchronously or
asynchronously back to the client. The AdhocQueryResponse returns a collection of
objects whose element type is in the set of element types represented by the leaf nodes
of the RegistryEntry hierarchy in [ebRIM].

client e r
RegistrClient ChjectQueryManager

submithdhocCuendAdhocQuenReguestyAdhocQuenREesponse

onResponseiRegistrvResponse)void

I I
I ;

I I
] -

I I

I I

I I

| |

Figure 21: Submit Ad Hoc Query Sequence Diagram

ebXML Registry Services Specification Page 75

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

2518
2519

2520

2521
2522
2523
2524
2525
2526
2527
2528
2529

2530

2531
2532
2533

2534
2535
2536

2537

2538
2539
2540
2541
2542

2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562

ebXML Registry May 2001

For details on the schema for the business documents shown in this process refer to
Appendix A.

8.5 Content Retrieval

A client retrieves content via the Registry by sending the GetContentRequest to the
ObjectQueryManager. The GetContentRequest specifies a list of Object references for
Objects that need to be retrieved. The ObjectQueryManager returns the specified
content by sending a GetContentResponse message to the ObjectQueryManagerClient
interface of the client. If there are no errors encountered, the GetContentResponse
message includes the specified content as additional payloads within the message. In
addition to the GetContentResponse payload, there is one additional payload for each
content that was requested. If there are errors encountered, the RegistryResponse
payload includes an error and there are no additional content specific payloads.

8.5.1 Identification Of Content Payloads

Since the GetContentResponse message may include several repository items as
additional payloads, it is necessary to have a way to identify each payload in the
message. To facilitate this identification, the Registry must do the following:

Use the ID for each RegistryEntry instance that describes the repository item as
the DocumentLabel element in the DocumentReference for that object in the
Manifest element of the ebXMLHeader.

8.5.2 GetContentResponse Message Structure

The following message fragment illustrates the structure of the GetContentResponse
Message that is returning a Collection of CPPs as a result of a GetContentRequest that
specified the IDs for the requested objects. Note that the ID for each object retrieved in
the message as additional payloads is used as its DocumentLabel in the Manifest of the
ebXMLHeader.

- -Part Boundary
;éb:Nbssagerader SOAP- ENV: nust Under st and="1" eb: versi on="1. 0" >

”.<eb:Service eb: t ype="ebXM_Regi st ry” >Cbj ect Manager </ eb: Ser vi ce>
<eb: Acti on>subm t Cbj ect s</ eb: Acti on>

;/eb:hhssagekbader>

<eb: Mani f est SOAP- ENV: nmust Under st and="1" eb: ver si on="1. 0" >
<eb: Ref erence xlink: href="cid:registryentri es@xanpl e. coni .>
<eb: Description xm:|ang="en-us">XM instances that are paraneters for the particul ar
Regi stry Interface / Method. These are RIM structures that don't include repository itenms, just a
reference — contentURI to them </eb: Descri ption>
</ eb: Ref er ence>
<eb: Ref erence xlink: href="ci d: cppl@xanpl e. coni .>

ebXML Registry Services Specification Page 76

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602

2603

2604

2605
2606

ebXML Registry

May 2001

<eb: Description xm:|ang="en-us">XM. instance of CPP 1. This is a repository

i tem </ eb: Descri pti on>
</ eb: Ref er ence>

<eb: Ref erence xli nk: href ="ci d: cpp2@xanpl e. coni .=

>

<eb: Description xm:|ang="en-us">XM. instance of CPP 2. This is a repository

i tem </ eb: Descri pti on>
</ eb: Ref er ence>
</ eb: Mani f est >

- -Part Boundar y

Content- 1D registryentri es@xanpl e. com

Cont ent- Type: text/xmn

<?xm version="1.0" encodi ng="UTF-8"?>

<Root El enent >
<Subm t Obj ect sRequest >
<Regi stryEntryLi st >

<Extrinsi cQoj ect ...contentUR ="cid: cppl@xanpl e.coni ..[>
<Extrinsi cObj ect ...contentURl ="ci d: cpp2@xanpl e. coni ../[>

</ Regi stryEntryLi st>
</ Subm t Obj ect sRequest >
</ Root El enent >
- - Part Boundary
Content- I D: cppl@xanpl e. com
Cont ent- Type: text/xmn
<CPP>
Q/CPP>
- -Part Boundary
Content- I D: cpp2@xanpl e. com
Cont ent- Type: text/xm
<CPP>
</ cPP>

- - Par t Boundar y- -

8.6 Query And Retrieval: Typical Sequence

The following diagram illustrates the use of both browse/drilldown and ad hoc queries

followed by a retrieval of content that was selected by the queries.

ebXML Registry Services Specification

Page 77

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

2607
2608

2609

2610
2611
2612

2613
2614
2615
2616
2617

ebXML Registry May 2001

client ue r
RegistryClient OhjectQueryWanager

getRootClassificationModes(GetRootClassificationtodesRequest . RegistryResponse

[
LT
I [success] onResponse(ReqistryResponselvoid
| oetClassificationTree(GetClassificationTreeRequest RegistyResponse
L1
! [success] onResponse(RegistryResponselvoid

| getClassifiedOhjects(GetzlassifiedOhjectsRequest:RegistrvResponse

J

I [success] onResponse(RegistryResponse)void

L

| submitddhocGuendAdhocQuernyRequest) RenistryResponse

[success] onResponse(ReqistryResponselvoid

getContentd) RegistryResponse

[success] onResponse(RegistryResponselvoid

e B SRS S SRR S R ST A S

T
|
|
7
7
:
I
|

Figure 23: Typical Query and Retrieval Sequence

9 Registry Security

This chapter describes the security features of the ebXML Registry. It is assumed that
the reader is familiar with the security related classes in the Registry information model
as described in [ebRIM].

In the current version of this specification, a minimalist approach has been specified for
Registry security. The philosophy is that “Any known entity can publish content and
anyone can view published content.” The Registry information model has been
designed to allow more sophisticated security policies in future versions of this
specification.

ebXML Registry Services Specification Page 78

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

2618

2619
2620
2621
2622
2623
2624

2625

2626
2627
2628

2629

2630
2631

2632

2633
2634
2635
2636

2637
2638
2639
2640

2641
2642
2643

2644

2645
2646
2647
2648

ebXML Registry May 2001

9.1 Integrity of Registry Content

It is assumed that most business registries do not have the resources to validate the
veracity of the content submitted to them. The minimal integrity that the Registry must
provide is to ensure that content submitted by a Submitting Organization (SO) is
maintained in the Registry without any tampering either en-route or within the Registry.
Furthermore, the Registry must make it possible to identify the SO for any Registry
content unambiguously.

9.1.1 Message Payload Signature

Integrity of Registry content requires that all submitted content must be signed by the
Registry client as defined by [SEC]. The signature on the submitted content ensures
that:

The content has not been tampered with en-route or within the Registry.

The content’s veracity can be ascertained by its association with a specific
submitting organization

9.2 Authentication

The Registry must be able to authenticate the identity of the Principal associated with
client requests. Authentication is required to identify the ownership of content as well as
to identify what “privileges” a Principal can be assigned with respect to the specific
objects in the Registry.

The Registry must perform Authentication on a per request basis. From a security point
of view, all messages are independent and there is no concept of a session
encompassing multiple messages or conversations. Session support may be added as
an optimization feature in future versions of this specification.

The Registry must implement a credential-based authentication mechanism based on
digital certificates and signatures. The Registry uses the certificate DN from the
signature to authenticate the user.

9.2.1 Message Header Signature

Message headers may be signed by the sending ebXML Messaging Service as defined
by [SEC]. Since this specification is not yet finalized, this version does not require that
the message header be signed. In the absence of a message header signature, the
payload signature is used to authenticate the identity of the requesting client.

ebXML Registry Services Specification Page 79

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

ebXML Registry May 2001

2649 9.3 Confidentiality

2650 9.3.1 On-the-wire Message Confidentiality

2651 Itis suggested but not required that message payloads exchanged between clients and
2652 the Registry be encrypted during transmission. Payload encryption must abide by any
2653 restrictions set forth in [SEC].

2654 9.3.2 Confidentiality of Registry Content

2655 In the current version of this specification, there are no provisions for confidentiality of
2656 Registry content. All content submitted to the Registry may be discovered and read by
2657 any client. Therefore, the Registry must be able to decrypt any submitted content after it
2658 has been received and prior to storing it in its repository. This implies that the Registry
2659 and the client have an a priori agreement regarding encryption algorithm, key exchange
2660 agreements, etc. This service is not addressed in this specification.

2661 9.4 Authorization

2662 The Registry must provide an authorization mechanism based on the information model
2663 defined in [ebRIM]. In this version of the specification the authorization mechanism is
2664 based on a default Access Control Policy defined for a pre-defined set of roles for

2665 Registry users. Future versions of this specification will allow for custom Access Control
2666 Policies to be defined by the Submitting Organization.

2667 9.4.1 Pre-defined Roles For Registry Users

2668 The following roles must be pre-defined in the Registry:

. Role | Descripon

The submitter or owner of a Registry content. Submitting
Organlzatlon (SO) in1SO 11179

ContentOwner

A “super” user that is an administrator of the Registry.

RegistryAdministrator Registration Authority (RA) in 1ISO 11179

Any unauthenticated user of the Registry. Clients that

RegistryGuest browse the Registry do not need to be authenticated.

2669 9.4.2 Default Access Control Policies

2670 The Registry must create a default AccessControlPolicy object that grants the default
2671 permissions to Registry users based upon their assigned role.

2672 The following table defines the Permissions granted by the Registry to the various pre-
2673 defined roles for Registry users based upon the default AccessControlPolicy.

2674

ebXML Registry Services Specification Page 80

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

2675
2676

2677
2678

2679
2680

2681
2682

2683
2684

2685
2686
2687
2688

2689
2690

2691

2692
2693

2694
2695
2696
2697
2698
2699
2700
2701
2702

ebXML Registry May 2001

Access to all methods on Registry Objects that are
ContentOwner owned by the ContentOwner.

RegistryAdministrator ||Access to all methods on all Registry Objects

Access to all read-only (getXXX) methods on all Registry

RegistryGuest Objects (read-only access to all content).

The following list summarizes the default role-based AccessControlPolicy:

The Registry must implement the default AccessControlPolicy and associate it
with all Objects in the Registry

Anyone can publish content, but needs to be authenticated
Anyone can access the content without requiring authentication

The ContentOwner has access to all methods for Registry Objects owned by
them

The RegistryAdministrator has access to all methods on all Registry Objects
Unauthenticated clients can access all read-only (getXXX) methods

At the time of content submission, the Registry must assign the default
ContentOwner role to the Submitting Organization (SO) as authenticated by the
credentials in the submission message. In the current version of this
specification, it will be the DN as identified by the certificate

Clients that browse the Registry need not use certificates. The Registry must
assign the default RegistryGuest role to such clients.

Appendix A ebXML Registry DTD Definition

The following is the definition for the various ebXML Message payloads described in
this document.

<?xm version="1.0" encodi ng="UTF-8"?>
<l-- Begin informtion nodel mapping. -->

<l--
Obj ect Attributes are attributes fromthe RegistryObject interface in ebRIM

id my be enpty. If specified it may be in urn:uuid format or be in sone
arbitrary format. If id is enpty registry must generate globally unique id.

ebXML Registry Services Specification Page 81

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

ebXML Registry May 2001

2703
2704 If idis provided and in proper UU D syntax (starts with urn:uuid:)
2705 registry will honour it.

2706

2707 If idis provided and is not in proper UUID syntax then it is used for
2708 i nkage within docunent and is ignored by the registry. In this case the
2709 registry generates a UUID for id attribute.

2710

2711 id nmust not be null when object is being retrieved fromthe registry.
2712 -->

2713 <IENTITY % Obj ect Attri butes "

2714 id I D #| MPLI ED

2715 name CDATA #l MPLI ED

2716 descri ption CDATA #| MPLI ED

2717 ">

2718

2719 <! --

2720 Use as a proxy for an Cbject that is in the registry already.
2721 Specifies the id attribute of the object in the registry as its id attribute.

2722 idattribute in ObjectAttributes is exactly the same syntax and senmantics as
2723 idattribute in RegistryCbject.
2724 -->

2725 <! ELEMENT Cbj ect Ref EMPTY>
2726 <I ATTLI ST Obj ect Ref

2727 id | D # MPLI ED

2728 >

2729

2730 <! ELEMENT bj ect RefLi st (ObjectRef)*>
2731

2732 <I--

2733 Regi stryEntryAttri butes are attributes fromthe RegistryEntry interface
2734 in ebRIM
2735 It inherits ObjectAttributes

2736 -->

2737 <IENTITY % Regi stryEntryAttributes " %0bjectAttributes;
2738 maj or Ver si on CDATA "1’

2739 m nor Ver si on CDATA 'O

2740 st at us CDATA #l MPLI ED

2741 user Versi on CDATA #l MPLI ED

2742 stability CDATA 'Dynam c'

2743 expi rationDate CDATA #l WPLI ED" >

2744

2745 <! ELEMENT Regi stryEntry (Sl otList?)>
2746 <I ATTLI ST Regi stryEntry

2747 YRegi stryEntryAttri butes; >
2748 <! ELEMENT Val ue (#PCDATA) >

2749 <! ELEMENT Val uelLi st (Val ue*) >

2750 <! ELEMENT Sl ot (Val uelList?)>

2751 <! ATTLI ST Sl ot

2752 name CDATA #REQUI RED
2753 sl ot Type CDATA #| MPLI ED
2754 >

2755 <! ELEMENT SlotList (Slot*)>
2756

2757 <l--

2758 ExtrinsicObject are attributes fromthe ExtrinsicObject interface in ebRIM

ebXML Registry Services Specification Page 82

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814

ebXML Registry May 2001

It inherits RegistryEntryAttributes
-->

<!l ELEMENT Extrinsi cObject EMPTY >

<I ATTLI ST Extrinsi cObj ect
YRegi stryEntryAttri butes;
cont ent URI CDATA #REQUI RED
m nmeType CDATA #l| MPLI ED
obj ect Type CDATA #REQUI RED
opaque (true | false) "fal se"

<IENTITY % IntrinsicObjectAttributes " %RegistryEntryAttributes;">

<I-- Leaf classes that reflect the concrete classes in ebRIM-->

<! ELEMENT Regi stryEntryLi st

(Association | Classification | Classificati onNode | Package
External Link | Externalldentifier | Organization
ExtrinsicObject | ObjectRef)*>

<l --
An External Link specifies a link froma RegistryEntry and an external UR
-->
<!l ELEMENT External Li nk EMPTY>
<I ATTLI ST Ext ernal Li nk

% ntrinsicObjectAttributes;

ext ernal URI CDATA #l MPLI ED
>

<l --
An External Identifier provides an identifier for a RegistryEntry

The value is the value of the identifier (e.g. the social security nunber)
-->
<! ELEMENT External I dentifier EMPTY>
<I ATTLI ST External I dentifier
% ntrinsicObjectAttributes;

val ue CDATA #REQUI RED
>

<I--
An Associ ation specifies references to two previously submtted
registry entrys.

The sourceObject is id of the sourceCbject in association
The targetObject is id of the targetObject in association
-->
<! ELEMENT Associ ati on EMPTY>
<I ATTLI ST Associ ati on

% ntrinsicObjectAttributes;

sour ceRol e CDATA #| MPLI ED

t ar get Rol e CDATA #| MPLI ED

associ ati onType CDATA #REQUI RED

bidirection (true | false) "fal se"

ebXML Registry Services Specification Page 83

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870

ebXML Registry May 2001

sourceObj ect | DREF #REQUI RED
target Obj ect | DREF #REQUI RED
>

<l--
A Classification specifies references to two registry entrys.

The classifiedObject is id of the Object being classified.
The classificationNode is id of the ClassificationNode cl assying the object
-->
<!l ELEMENT Cl assificati on EMPTY>
<I' ATTLI ST Cl assification
% ntrinsicObjectAttributes;
cl assifiedObject | DREF #REQUI RED
cl assificati onNode | DREF #REQUI RED
>

<l--
A Package is a named coll ection of objects.
-->
<! ELEMENT Package EMPTY>
<I ATTLI ST Package
% ntrinsicObjectAttributes;
>

<l-- Attributes inherited by various types of telephone nunber elenents -->
<IENTITY % Tel ephoneNunber Attri butes " areaCode CDATA #REQUI RED
contryCode CDATA #REQUI RED
ext ensi on CDATA #l MPLI ED
nunber CDATA #REQUI RED
ur | CDATA #| MPLI ED" >
<!l ELEMENT Tel ephoneNunber EMPTY>
<I ATTLI ST Tel ephoneNunber
%lel ephoneNunber Attri but es;
>
<!l ELEMENT FaxNumber EMPTY>
<I ATTLI ST FaxNumber
%lel ephoneNunber Attri butes;
>

<! ELEMENT Pager Nunber EMPTY>
<I ATTLI ST Pager Nunber

%lel ephoneNunber Attri but es;
>

<! ELEMENT Mobi | eTel ephoneNunmber EMPTY>

<I ATTLI ST Mbbi | eTel ephoneNunber
%lel ephoneNunber Attri butes;

>

<l'-- Postal Address -->

<! ELEMENT Post al Addr ess EMPTY>

<I ATTLI ST Post al Addr ess
city CDATA #REQUI RED
country CDATA #REQUI RED
post al Code CDATA #REQUI RED
state CDATA #l MPLI ED

ebXML Registry Services Specification Page 84

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926

ebXML Registry May 2001

street CDATA #REQUI RED
>
<l-- PersonNane -->
<! ELEMENT Per sonNane EMPTY>
<! ATTLI ST Per sonNane
firstName CDATA #REQUI RED
m ddl eNanme CDATA #| MPLI ED
| ast Name CDATA #REQUI RED
>

<l-- Organization -->
<!l ELEMENT Organi zati on (Postal Address, FaxNunber?, Tel ephoneNunber) >
<I ATTLI ST Organi zati on
% ntrinsicObjectAttributes;
parent | DREF #| MPLI ED
pri maryCont act | DREF #REQUI RED
>

<! ELEMENT User (PersonName, Postal Address, Tel ephoneNunber,
Mobi | eTel ephoneNunber ?,
FaxNumber ?, Pager Nunber ?) >
<! ATTLI ST User
% bj ect Attri butes;
organi zati on | DREF #| MPLI ED
emai | CDATA #l| MPLI ED
url CDATA #l MPLI ED
>

<! ELEMENT Audit abl eEvent EMPTY>

<I ATTLI ST Audi t abl eEvent
% bj ect Attri butes;
event Type CDATA #REQUI RED
regi stryEntry | DREF #REQUI RED
ti mestanp CDATA #REQUI RED
user | DREF #REQUI RED

>

<l--
ClassificationNode is used to submit a Classification tree to the Registry.

parent is the id to the parent node. code is an optional code value for a
Cl assi ficati onNode
often defined by an external taxonony (e.g. NAICS)
-->
<I ELEMENT Cl assificati onNode EMPTY>
<I ATTLI ST Cl assifi cati onNode
% ntrinsicObjectAttributes;
parent | DREF #| MPLI ED
code CDATA #| MPLI ED
>

<l--
End i nformati on nodel mapping.

Begi n Registry Services Interface

ebXML Registry Services Specification Page 85

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982

ebXML Registry May 2001

<! ELEMENT Request Accept edResponse EMPTY>
<I ATTLI ST Request Accept edResponse
xm ;1 ang NMIOKEN #REQUI RED
>
<!--

The Submit Obj ect sRequest allows one to submit a |list of RegistryEntry

el enents. Each Regi stryEntry el enent provides nmetadata for a single submtted
object. Note that the repository itembeing submitted is in a separate
docunent that is not in this DID. The ebXM. Messagi ng Servi ces Specfication
defi nes packagi ng, for submi ssion, of the netadata of a repository itemwth
the repository itemitself. The value of the contentURlI attribute of the
Extrinsi cObj ect el enent nust be the sane as the xlink:href attribute within
the Reference elenment within the Mani fest el enent of the MessageHeader.

-->

<!l ELEMENT Subni t Obj ect sRequest (Regi stryEntryList)>

<!l ELEMENT AddSl ot sRequest (ObjectRef, SlotlList)+>

<l-- Only need name in Slot within SlotList -->
<! ELEMENT RenoveS| ot sRequest (CObjectRef, SlotlList)+>
<l--

The ObjectRefList is the |ist of

refs to the registry entrys being approved.

-->

<!l ELEMENT ApproveOhj ect sRequest (Object ReflList)>
<l--

The ObjectRefList is the list of

refs to the registry entrys being deprecated.
-->

<! ELEMENT Depr ecat eObj ect sRequest (Obj ect Ref Li st)>
<I--

The ObjectRefList is the |ist of

refs to the registry entrys being renoved

-->

<!l ELEMENT RenmpveObj ect sRequest (Obj ect RefList)>
<I ATTLI ST RenpveObj ect sRequest

del eti onScope (Del eteAll | Del eteRepositoryltenOnly) "Del eteAll"
>
<! ELEMENT GCet Root Cl assi fi cati onNodesRequest EMPTY>
<l--

The nanePattern follows SQL-92 syntax for the pattern specified in
LIKE clause. It allows for selecting only those root nodes that match
the nanePattern. The default value of '*' matches all root nodes.
-->
<I ATTLI ST Cet Root Cl assi fi cati onNodesRequest
nanmePat t ern CDATA "*"
>
<l--
The response includes one or nore Classificati onNodes
-->
<! ELEMENT Cet Root Cl assi fi cati onNodesResponse (Cl assificati onNode+)>
<I--
Get the classification tree under the Cl assificati onNode specified parentRef.

If depth is 1 just fetch i mediate child
nodes, otherw se fetch the descendant tree upto the specified depth |evel.
If depth is O that inplies fetch entire sub-tree

ebXML Registry Services Specification Page 86

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

ebXML Registry May 2001

2983 -->
2984 <!l ELEMENT GCet Cl assificationTreeRequest EMPTY>
2985 <I ATTLI ST GetCl assi ficati onTreeRequest

2986 parent CDATA #REQUI RED

2987 dept h CDATA "1"

2988 >

2989 <! --

2990 The response includes one or nore ClassificationNodes which includes only
2991 i medi ate Cl assificati onNode children nodes if depth attribute in

2992 CetCl assificationTreeRequest was 1, otherw se the decendent nodes
2993 upt o specified depth | evel are returned.

2994 -->

2995 <!l ELEMENT GCetCl assificationTreeResponse (Cl assificationNode+)>
2996 <! --

2997 Get refs to all registry entrys that are classified by all the
2998 ClassificationNodes specified by ObjectReflList.

2999 Note this is an inplicit |ogical AND operation

3000 -->
3001 <l ELEMENT Get Cl assi fi edObj ect sRequest (Obj ect Ref Li st) >
3002 <I--

3003 obj ect Type attribute can specify the type of objects that the registry
3004 client is interested in, that is classified by this C assificati onNode.
3005 It is a String that matches a choice in the type attribute of

3006 Extrinsi cObj ect.

3007 The default value of '"*' inplies that client is interested in all types
3008 of registry entrys that are classified by the specified Classificati onNode.
3009 -->

3010 <!--

3011 The response includes a RegistryEntryLi st which has zero or nore

3012 Regi stryEntrys that are classified by the Cl assificationNodes

3013 specified in the ObjectRefList in GetCl assifiedObjectsRequest.

3014 -->

3015 <!l ELEMENT Cet Cl assi fi edObj ect sResponse (Regi stryEntryList)>

3016 <!--

3017 An Ad hoc query request specifies a query string as defined by [RS] in the

3018 queryString attribute

3019 -->

3020 <! ELEMENT AdhocQueryRequest (FilterQuery | ReturnRegistryEntry |

3021 Ret urnRepositoryltem | SQ.Query)>
3022 <! ELEMENT SQLQuery (#PCDATA) >

3023 <!--

3024 The response includes a RegistryEntryLi st which has zero or nore
3025 Regi stryEntrys that match the query specified in AdhocQueryRequest.
3026 -->

3027 <l ELEMENT AdhocQuer yResponse

3028 (RegistryEntryList |

3029 FilterQueryResult |

3030 Ret ur nRegi stryEntryResul t |
3031 Ret urnRepositoryltenResult)>
3032 <!--

3033 Gets the actual content (not netadata) specified by the ObjectRefList
3034 -->
3035 <l ELEMENT Get Cont ent Request (Obj ect RefList)>

3036 <!--
3037 The Get Obj ect sResponse wi Il have no sub-elenments if there were no errors.
3038 The actual contents will be in the other payloads of the nessage.

ebXML Registry Services Specification Page 87

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094

ebXML Registry May 2001

-->

<! ELEMENT Get Cont ent Response EMPTY >

<I--

Descri bes the capability profile for the registry and what optional features

are supported
-->
<!l ELEMENT Regi stryProfile (Optional FeaturesSupported)>
<I ATTLI ST Regi stryProfile
ver si on CDATA #REQUI RED
>

<! ELEMENT Opti onal Feat uresSupported EMPTY>
<I ATTLI ST Opti onal Feat uresSupported
sql Query (true | false) "fal se"
XxQuery (true | false) "fal se"
>
<l-- Begin FilterQuery DID -->

<I ELEMENT FilterQuery (RegistryEntryQuery | Auditabl eEvent Query |

Cl assi ficati onNodeQuery |

Regi st ryPackageQuery |
Organi zati onQuery) >

<l ELEMENT FilterQueryResult (RegistryEntryQueryResult |

Audi t abl eEvent Quer yResul t

Cl assi ficati onNodeQueryResult |
Regi stryPackageQueryResul t |
Or gani zati onQueryResul t) >

<! ELEMENT Regi stryEntryQueryResult (RegistryEntryView)>
<! ELEMENT Regi stryEntryVi ew EMPTY>
<I ATTLI ST Regi stryEntryVi ew
obj ect URN CDATA #REQUI RED
content URI CDATA #| MPLI ED
obj ect | D CDATA #l MPLI ED
>
<! ELEMENT Audi t abl eEvent QueryResult (Audit abl eEvent Vi ew*) >
<! ELEMENT Audi t abl eEvent Vi ew EMPTY>
<I ATTLI ST Audi t abl eEvent Vi ew
obj ect | D CDATA #REQUI RED
ti mestanp CDATA #REQUI RED
>

<!l ELEMENT Cl assificati onNodeQueryResult (ClassificationNodeVi ew*) >

<! ELEMENT Cl assi fi cati onNodeVi ew EMPTY>
<I ATTLI ST Cl assi fi cati onNodeVi ew

obj ect URN CDATA #REQUI RED

cont ent URI CDATA #| MPLI ED

obj ect | D CDATA #l MPLI ED
>

<! ELEMENT Regi stryPackageQueryResult (Regi stryPackageVi ew) >

<! ELEMENT Regi stryPackageVi ew EMPTY>
<I ATTLI ST Regi stryPackageVi ew
obj ect URN CDATA #REQUI RED
content URI CDATA #l MPLI ED
obj ect | D CDATA #l MPLI ED
>
<l ELEMENT Or gani zati onQueryResult (OrganizationVi ew) >
<! ELEMENT Organi zati onVi ew EMPTY>
<I ATTLI ST Organi zati onVi ew

ebXML Registry Services Specification

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Page 88

3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150

ebXML Registry

May 2001

or gURN CDATA #REQUI RED
obj ect | D CDATA #l MPLI ED

>
<!l ELEMENT Regi stryEntryQuery
(RegistryEntryFilter?,
Sour ceAssoci ati onBranch*,
Tar get Associ ati onBranch*,
HasCl assi fi cati onBranch*,
Submi tti ngOrgani zati onBranch?,
Responsi bl eOr gani zat i onBranch?,
External IdentifierFilter*,
Ext er nal Li nkFi |l ter*,
SlotFilter*,
HasAudi t abl eEvent Br anch*) >
<!l ELEMENT Sour ceAssoci ati onBranch (AssociationFilter?, RegistryEntryFilter?)>
<l ELEMENT Tar get Associ ati onBranch (Associ ationFilter?, RegistryEntryFilter?)>
<! ELEMENT HasC assi ficati onBranch (Cl assificationFilter?,
Cl assi ficati onNodeFilter?)>
<! ELEMENT SubnittingOrgani zati onBranch (OrganizationFilter?, ContactFilter?)>
<! ELEMENT Responsi bl eOrgani zati onBranch (Organi zationFilter?,
ContactFilter?)>
<! ELEMENT HasAudi t abl eEvent Branch (Auditabl eEventFilter?, UserFilter?,
Organi zationFilter?)>
<! ELEMENT Audi t abl eEvent Query

(Audi t abl eEventFil ter?,

<! ELEMENT
(UserFi

<! ELEMENT

<! ELEMENT

<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT

<! ELEMENT
<! ELEMENT

<! ELEMENT

<! ELEMENT

<! ELEMENT
<! ELEMENT

ebXML Registry Services Specification

Regi st ryEntryQuery*, 1nvokedByBranch?)>
I nvokedByBr anch
[ter?, OrganizationQuery?)>

Cl assificati onNodeQuery (Cl assificati onNodeFilter?,
PernmitsCl assifi cati onBranch*,
HasPar ent Node?, HasSubnode*) >
Perm tsCl assificationBranch (Cl assificationFilter?,
Regi stryEntryQuery?) >
HasPar ent Node (Cl assificati onNodeFilter?, HasParentNode?) >
HasSubnode (Cl assificationNodeFilter?, HasSubnode*)>
Regi st ryPackageQuery (PackageFilter?, HasMenberBranch*) >
HasMenber Branch (Regi stryEntryQuery?)>
Organi zati onQuery (Organi zationFilter?, Subm tsRegi stryEntry*,
HasPar ent Or gani zati on?,
I nvokesEvent Br anch*,
ContactFilter*)>
Submi t sRegi stryEntry (RegistryEntryQuery?)>
HasPar ent Or gani zati on (Organi zati onFilter?,
HasPar ent Or gani zati on?) >
Audi t abl eEvent Fil ter?,
Regi stryEntryQuery?) >
Ret urnRegi stryEntry (Regi stryEntryQuery, WthCl assifications?,
W t hSour ceAssoci ati ons?,
W t hTar get Associ ati ons?,
W t hAudi t abl eEvent s?,
W t hExt er nal Li nks?) >
WthC assifications (ClassificationFilter?)>
W t hSour ceAssoci ati ons (Associ ationFilter?)>

I nvokesEvent Branch (UserFilter?,

Page 89

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206

ebXML Registry

May 2001

<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT

<! ELEMENT
<! ELEMENT
<! ELEMENT

<! ELEMENT
<I ATTLI ST

Wt hTar get Associ ati ons (Associ ationFilter?)>
W t hAudi t abl eEvents (Auditabl eEventFilter?)>
W t hExt er nal Li nks (External Li nkFilter?)>
Ret ur nRegi stryEntryResult (Regi stryEntryMet adata*) >
Regi stryEntryMet adata (Regi stryEntry, Classification*,
Sour ceAssoci ati ons?,
Tar get Associ ati ons?,
Audi t abl eEvent *, External Li nk*) >
Sour ceAssoci ati ons (Associ ation*)>
Tar get Associ ati ons (Associ ati on*) >
Ret ur nRepositoryltem (Regi stryEntryQuery,
Recur si veAssoci ati onOpti on?,
W t hDescri ption?)>
Recur si veAssoci ati onOpti on (Associ ati onType+) >
Recur si veAssoci ati onOpti on

dept hLi mit CDATA #| MPLI ED

>
<! ELEMENT
<I ATTLI ST

Associ ati onType EMPTY>
Associ ati onType

rol e CDATA #REQUI RED

>
<! ELEMENT
<! ELEMENT
<! ELEMENT

<I ATTLI ST

identifier

W t hDescri pti on EMPTY>

Ret urnRepositoryltenResult (Repositoryltent)>

Repositoryltem (Regi stryPackage | ExtrinsicObject |
| External Link)>

W t hdr awnObj ect

Repositoryltem
CDATA #REQUI RED

name CDATA #REQUI RED

cont ent URI

CDATA #REQUI RED

obj ect Type CDATA #REQUI RED
st at us CDATA #REQUI RED
stability CDATA #REQUI RED
descri ption CDATA #l MPLI ED

>

<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT

<l--

The following |ines define the XM. syntax for

S

ebXML Registry Services Specification

Regi st ryPackage EMPTY>

W t hdr awnObj ect EMPTY>

Ext er nal Li nkl t em EMPTY>
ObjectFilter (C ause)>

Regi stryEntryFilter (Cl ause)>
IntrinsicCbjectFilter (Cl ause)>
ExtrinsicObjectFilter (Cl ause)>
PackageFil ter (C ause)>

Organi zationFilter (Clause)>
ContactFilter (Cl ause)>

Cl assificati onNodeFilter (Cl ause)>
Associ ationFilter (Cl ause)>
ClassificationFilter (C ause)>

Ext ernal Li nkFil ter (Cl ause)>
SlotFilter (C ause)>
External IdentifierFilter
Audi t abl eEvent Fil ter
UserFilter (Cl ause)>

(Cl ause) >
(Cl ause) >

Cl ause.

Page 90

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262

ebXML Registry May 2001

<I ELEMENT Cl ause (Sinpl eCl ause | ConmpoundCl ause) >
<! ELEMENT Si npl eCl ause (Bool eanCl ause | Rational Clause | StringCl ause) >
<I ATTLI ST Si npl eCl ause
| eft Argument CDATA #REQUI RED
>
<! ELEMENT ConpoundCl ause (Cl ause, Cl ause+)>
<I ATTLI ST ConpoundCl ause
connectivePredicate (And | O) #REQUI RED
>
<!l ELEMENT Bool eanCl ause EMPTY>
<! ATTLI ST Bool eanCl ause
bool eanPredi cate (true | fal se) #REQU RED
>
<!l ELEMENT Rati onal Cl ause (IntClause | Fl oatCl ause)>
<! ATTLI ST Rati onal Cl ause
logical Predicate (LE| LT | GE| GI' | EQ| NE) #REQUI RED
>
<l ELEMENT I nt Cl ause (#PCDATA) >
<I ATTLI ST I nt Cl ause
e-dt ype NMIOKEN #FI XED "int"
>
<! ELEMENT Fl oat Cl ause (#PCDATA) >
<I ATTLI ST Fl oat Cl ause
e-dt ype NMIOKEN #FI XED "fl oat"
>
<l ELEMENT StringCl ause (#PCDATA) >
<I ATTLI ST StringCl ause
stringPredicate

(contains | -contains |
startswith | -startswith |
equal | -equal |

endswith | -endswi th) #REQU RED
>

<l-- End FilterQuery DID -->

<l-- Begin RegistryError definition -->
<l-- The RegistryErrorList is derived fromthe ErrorList elenment fromthe
ebXM. Message Service Specification -->
<! ELEMENT Regi stryErrorList (RegistryError+)>
<I ATTLI ST Regi stryErrorList
hi ghest Severity (Warning | Error) ‘Warning >

<l ELEMENT Regi stryError (#PCDATA) >
<I ATTLI ST Regi stryError
codeCont ext CDATA #REQUI RED

error Code CDATA #REQUI RED
severity (Warning | Error) ‘Warning’
| ocation CDATA #l MPLI ED

xm : 1 ang NMTOKEN #1 MPLI ED>

<! ELEMENT Regi stryResponse
((AdhocQueryResponse |
Get Cont ent Response |
Get Cl assificati onTreeResponse |
Get Cl assi fi edObj ect sResponse |
Get Root Cl assi fi cati onNodesResponse) ?,

ebXML Registry Services Specification Page 91

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290

3291

3292

3293
3294

3295

3296
3297
3298

3299

3300
3301

3302
3303
3304

ebXML Registry May 2001

Regi stryErrorList?)>
<I ATTLI ST Regi stryResponse
status (success | failure) #REQUI RED >

<!-- The contrived root node -->

<! ELEMENT Root El enent

(Submit Obj ect sRequest |
Appr oveCbj ect sRequest |
Depr ecat eObj ect sRequest |
Renpbvehj ect sRequest |
Get Root Cl assi fi cati onNodesRequest |
Get Cl assificati onTreeRequest |
Get Cl assi fi edObj ect sRequest |
AdhocQuer yRequest |
Get Cont ent Request |
AddSI ot sRequest |
RenoveS| ot sRequest |
Regi stryResponse |
Regi stryProfile) >

<! ELEMENT Href (#PCDATA)>
<! ELEMENT XM.Document ErrorLocn (Docunentld , Xpath)>
<! ELEMENT Docunentld (#PCDATA)>

<! ELEMENT Xpath (#PCDATA) >

Appendix B
Interpretation of UML Diagrams

This section describes in abstract terms the conventions used to define ebXML
business process description in UML.

B.1 UML Class Diagram

A UML class diagram is used to describe the Service Interfaces (as defined by [ebCPP])
required to implement an ebXML Registry Services and clients. See Figure 2 on page
14 for an example. The UML class diagram contains:

1. A collection of UML interfaces where each interface represents a Service
Interface for a Registry service.

2. Tabular description of methods on each interface where each method represents
an Action (as defined by [ebCPP]) within the Service Interface representing the
UML interface.

ebXML Registry Services Specification Page 92

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

3305
3306
3307
3308
3309

3310

3311
3312
3313
3314
3315

3316
3317
3318
3319
3320

3321
3322
3323
3324

3325

3326

3327
3328
3329
3330

3331

3332
3333

3334

3335
3336

3337

3338
3339

ebXML Registry May 2001

3. Each method within a UML interface specifies one or more parameters, where
the type of each method argument represents the ebXML message type that is
exchanged as part of the Action corresponding to the method. Multiple
arguments imply multiple payload documents within the body of the
corresponding ebXML message.

B.2 UML Sequence Diagram

A UML sequence diagram is used to specify the business protocol representing the
interactions between the UML interfaces for a Registry specific ebXML business
process. A UML sequence diagram provides the necessary information to determine the
sequencing of messages, request to response association as well as request to error
response association as described by [ebCPP].

Each sequence diagram shows the sequence for a specific conversation protocol as
method calls from the requestor to the responder. Method invocation may be
synchronous or asynchronous based on the UML notation used on the arrow-head for
the link. A half arrow-head represents asynchronous communication. A full arrow-head
represents synchronous communication.

Each method invocation may be followed by a response method invocation from the
responder to the requestor to indicate the ResponseName for the previous Request.
Possible error response is indicated by a conditional response method invocation from
the responder to the requestor. See on page 20 for an example.

Appendix C SQL Query

C.1 SQL Query Syntax Specification

This section specifies the rules that define the SQL Query syntax as a subset of
SQL-92. The terms enclosed in angle brackets are defined in [SQL] orin
[SQL/PSM]. The SQL query syntax conforms to the <query specification>, modulo
the restrictions identified below:

1. A <select list> may contain at most one <select sublist>.

2. In a<select list> must be is a single column whose data type is UUID, from the
table in the <from clause>.

3. A <derived column> may not have an <as clause>.

4. <table expression> does not contain the optional <group by clause> and <having
clause> clauses.

5. A <table reference> can only consist of <table name> and <correlation name>.

6. A <table reference> does not have the optional AS between <table name> and
<correlation name>.

ebXML Registry Services Specification Page 93

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

3340

3341
3342
3343

3344
3345

3346
3347

3348

3349
3350
3351

3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395

ebXML Registry May 2001

7. There can only be one <table reference> in the <from clause>.

8. Restricted use of sub-queries is allowed by the syntax as follows. The <in
predicate> allows for the right hand side of the <in predicate> to be limited to a
restricted <query specification> as defined above.

9. A <search condition> within the <where clause> may not include a <query
expression>.

10.The SQL query syntax allows for the use of <sql i nvoked routi nes>
invocation from [SQL/PSM] as the RHS of the<i n pr edi cat e>.

C.2 Non-Normative BNF for Query Syntax Grammar

The following BNF exemplifies the grammar for the registry query syntax. It is provided
here as an aid to implementors. Since this BNF is not based on [SQL] it is provided as
non-normative syntax. For the normative syntax rules see Appendix C.1.

/***

* The Registry Query (Subset of SQ-92) grammar starts here

***/

Regi stryQuery = SQ.Select [“;"]

SQ Sel ect = "SELECT" SQ.Sel ect Col s "FROM' SQ.Tabl eLi st [SQ - Were]
SQ.Sel ectCols = ID

SQL.Tabl eLi st = SQ.Tabl eRef

SQ.Tabl eRef = I D

SQ Wiere = "WHERE' SQLOr Expr

SQO Expr = SQAndExpr ("OR' SQ.AndExpr)*

SQLANdEXpr = SQ.Not Expr ("AND' SQ.Not Expr)*
SQNot Expr = ["NOT"] SQ.Conpar eExpr
SQ.Conpar eExpr =

(SQ.Col Ref "1S") SQ.Isd ause
| SQ.SunExpr [SQ.Conpar eExprRi ght]

SQ.Conpar eExpr R ght =
SQLLi ked ause

| SQLInd ause
| SQLConpareCp SQ SunExpr
SQLConpare® =
|+
| >
| ="
| <
| ne=
SQInCause = ["NOM] "IN "(" SQLValueList ")"
ebXML Registry Services Specification Page 94

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

ebXML Registry May 2001

g%g? SQ.LVal ueLi st = SQ.LVal ueEl enent ("," SQ.LVal ueEl enent)*
3398 SQLLVal ueEl enment = "NULL" | SQ.Sel ect

3399

3400 SQIsC ause = SQCol Ref "I1S" ["NOr"] "NULL"

3401

3402 SQLLi ke ause = ["NOT"] "LIKE' SQPattern

3403

3404 SQPattern = STRI NG LI TERAL

3405

3406 SQ.lLiteral =

3407 STRI NG_LI TERAL

3408 | | NTEGER LI TERAL

3409 | FLOATI NG POl NT_LI TERAL

3410

3411 SQ.Col Ref = SQ.Lval ue

3412

3413 SQ.Lval ue = SQ.Lval ueTerm

3414

3415 SQ.Lval ueTerm= 1D ("." ID)*

3416

%ﬁl&g SQSunExpr = SQProduct Expr (("+" | "-") SQ.Product Expr)*
%ﬁlég SQLProduct Expr = SQ.UnaryExpr (("*" | "/") SQ.UnaryExpr)*
3421 SQUnaryExpr = [("+" | "-")] SQ.Term

3422

3423 SQTerm="(" SQO Expr ")"

3424 | SQ.Col Ref

3425 | SQ.Literal

3426

3427 INTEGER LITERAL = (["0"-"9"])+

3428

3429 FLQATI NG_PO NT_LI TERAL =

3430 (["07-"9"])+ "." (["0"-"9"])+ (EXPONENT)?
3431 | "." (["0"-"9"])+ (EXPONENT)?

3432 | (["0"-"9"])+ EXPONENT

3433 | (["0"-"9"])+ (EXPONENT)?

3434

3435 EXPONENT = ["e","E'] (["+","-"])? (["0"-"9"])+

3436

3437 STRING LITERAL: "' (~["' "])* ("' (~["" "])*)* "*"
3438

3439 ID=(<LETTER>)+ ("_" | "$" | "#" | <DQT> | <LETTER>)*

3440 LETTER = ["A"-"Z", "a"-"z"]
3441 DAT =1["0"-"9"]

3442 C.3 Relational Schema For SQL Queries

3443

3444 --SQL Load file for creating the ebXM. Registry tables
3445

3446

%iig --Mni mal use of SQ-99 features in DDL is illustrative and may be easily nmapped to SQ.-92
3449

3450 CREATE TYPE Short Name AS VARCHAR(64) NOT Fl NAL;

3451 CREATE TYPE LongName AS VARCHAR(128) NOT FI NAL:

gig% CREATE TYPE FreeFor nifext AS VARCHAR(256) NOT FI NAL;
3454 CREATE TYPE UUI D UNDER Short Name FI NAL;

3455 CREATE TYPE URI UNDER LongNare FI NAL;

3456

3457 CREATE TABLE Extrinsi cQbj ect (

3458

3459 - -Regi stryoj ect Attributes

3460 id UU D PRI MARY KEY NOT NULL,
3461 name LongNarre,

ebXML Registry Services Specification Page 95

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

ebXML Registry May 2001

3462 description Fr eeFor nifext ,
3463 accessControl Pol i cy UUl D NOT NULL,
3464
3465 --Versionable attributes
3466 maj or Ver si on I NT DEFAULT 0 NOT NULL,
3467 m nor Ver si on I NT DEFAULT 1 NOT NULL,
3468
3469 --RegistryEntry attributes
3470 st at us I NT DEFAULT O NOT NULL,
3471 user Ver si on Shor t Nane,
3472 stability I NT DEFAULT O NOT NULL,
3473 expirationDat e TI MESTAMP,
3474
3475 --ExtrinsicObject attributes
3476 cont ent URI URI,
3477 m nmeType Shor t Nane,
3478 obj ect Type I NT DEFAULT O NOT NULL,
3479 opaque BOOLEAN DEFAULT fal se NOT NULL
3480
3481);
3482
3483 CREATE PROCEDURE Regi stryEntry_associ at edCbj ect s(regi stryEntryld) {
3484 --Must return a collection of WIDs for related RegistryEntry instances
3485 }
3486
3487 CREATE PROCEDURE Regi stryEntry auditTrail (registryEntryld) {
3488 --Must return an collection of UJDs for Auditabl eEvents related to the RegistryEntry.
3489 --Coll ection nust be in ascending order by tinestanp
3490 }
3491
3492 CREATE PROCEDURE Regi st ryEntry_external Li nks(regi stryEntryld) {
3493 --Must return a collection of UUDs for External Links annotating this RegistryEntry.
3494 }
3495
3496 CREATE PROCEDURE Regi stryEntry_external | dentifiers(registryEntryld) {
3497 --Must return a collection of UU Ds for External Identifiers for this RegistryEntry.
3498 }
3499
3500 CREATE PROCEDURE Regi stryEntry_cl assifi cati onNodes(regi stryEntryld) {
ggg% --Must return a collection of WIDs for O assificationNodes classifying this RegistryEntry.
}
3503
3504 CREATE PROCEDURE Regi stryEnt ry_packages(regi stryEntryld) {
3505 --Must return a collection of UU Ds for Packages that this RegistryEntry bel ongs to.
3506 }
3507
3508 CREATE TABLE Package (
3509
3510 - -Regi stryCbj ect Attributes
3511 id UUI D PRI MARY KEY NOT NULL,
3512 name LongNarre,
3513 description Fr eeFor nifext ,
3514 accessControl Pol i cy UUI D NOT NULL,
3515
3516 --Versionabl e attributes
3517 maj or Ver si on I NT DEFAULT O NOT NULL,
3518 m nor Ver si on I NT DEFAULT 1 NOT NULL,
3519
3520 --RegistryEntry attributes
3521 st at us I NT DEFAULT O NOT NULL,
3522 user Ver si on Short Nane,
3523 stability I NT DEFAULT O NOT NULL,
3524 expirationDat e TI MESTAMP,
3525
3526 - -Package attri butes
3527);
3528
3529 CREATE PROCEDURE Package_nenber bj ect s(packagel d) {
3530 --Must return a collection of UWIDs for RegistryEntrys that are nmenebers of this Package.
3531 }
ebXML Registry Services Specification Page 96

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

ebXML Registry May 2001

3532

3533 CREATE TABLE Ext ernal Li nk (

3534

3535 - -Regi stryQCbj ect Attributes

3536 id UUI D PRI MARY KEY NOT NULL,
3537 name LongNane,

3538 descri ption Fr eeFor nifext ,

3539 accessControl Pol i cy UUI D NOT NULL,

3540

3541 --Versionabl e attributes

3542 maj or Ver si on | NT DEFAULT O NOT NULL,

3543 m nor Ver si on I NT DEFAULT 1 NOT NULL,

3544

3545 --RegistryEntry attributes

3546 st at us I NT DEFAULT O NOT NULL,
3547 user Ver si on Short Nane,

3548 stability I NT DEFAULT O NOT NULL,
3549 expirationDat e TI MESTAMP,

3550

3551 --External Link attributes

3552 ext er nal URI URI NOT NULL

3553);

3554

3555 CREATE PROCEDURE Ext er nal Li nk_I i nkedObj ect s(regi stryEntryld) {

3556 --Must return a collection of UUDs for objects in this relationship

3557 }

3558

3559 CREATE TABLE External | dentifier (

3560

3561 - -Regi stryQoj ect Attributes

3562 id UUI D PRI MARY KEY NOT NULL,
3563 name LongNarre,

3564 descri ption Fr eeFor nirext ,

3565 accessControl Pol i cy UUI D NOT NULL,

3566

3567 --Versionabl e attributes

3568 maj or Ver si on I NT DEFAULT O NOT NULL,

3569 m nor Ver si on I NT DEFAULT 1 NOT NULL,

3570

3571 --RegistryEntry attributes

3572 st at us I NT DEFAULT O NOT NULL,
3573 user Ver si on Shor t Nane,

3574 stability I NT DEFAULT O NOT NULL,
3575 expi rati onDat e TI MESTANP,

3576

3577 --External ldentifier attributes

3578 val ue Short Nanme NOT NULL
3579);

3580

3581

3582 --A SlotValue row represents one val ue of one slot in some

3583 --RegistryEntry

3584 CREATE TABLE Sl ot Val ue (

3585

3586 - -Regi stryQoj ect Attributes

3587 registryEntry UUID PRI MARY KEY NOT NULL,

3588

3589 --Slot attributes

3590 nane LongName NOT NULL PRI MARY KEY NOT NULL,
3591 val ue Short Name NOT NULL

3592);

3593

3594 CREATE TABLE Associ ation (

3595 - -Regi st ryCbj ect Attributes

3596 id WUl D PRI MARY KEY NOT NULL,
3597 name LongNane,

3598 description Fr eeFor nifext ,

3599 accessControl Pol i cy UUl D NOT NULL,

3600

3601 --Versionabl e attributes

ebXML Registry Services Specification Page 97

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

ebXML Registry May 2001

3602 maj or Ver si on I NT DEFAULT 0 NOT NULL,
3603 m nor Ver si on I NT DEFAULT 1 NOT NULL,
3604
3605 --RegistryEntry attributes
3606 st at us I NT DEFAULT O NOT NULL,
3607 user Ver si on Shor t Nane,
3608 stability I NT DEFAULT O NOT NULL,
3609 expirationDat e TI MESTAMP,
3610
3611 --Associ ation attributes
3612 associ ati onType I NT NOT NULL,
3613 bi di recti onal BOOLEAN DEFAULT fal se NOT NULL,
3614 sour ceChj ect UUI D NOT NULL,
3615 sour ceRol e Short Nane,
3616 | abel Shor t Nane,
3617 t ar get Qbj ect UUI D NOT NULL,
3618 t ar get Rol e Shor t Nane
3619);
3620
3621 --Cassification is currently identical to Association
3622 CREATE TABLE O assification (
3623 - -Regi stryQoj ect Attributes
3624 id UUI D PRI MARY KEY NOT NULL,
3625 name LongNarre,
3626 descri pti on Fr eeFor nifext ,
3627 accessControl Pol i cy UUI D NOT NULL,
3628
3629 --Versionable attributes
3630 maj or Ver si on I NT DEFAULT O NOT NULL,
3631 mi nor Ver si on I NT DEFAULT 1 NOT NULL,
3632
3633 --RegistryEntry attributes
3634 st at us I NT DEFAULT O NOT NULL,
3635 user Ver si on Shor t Nane,
3636 stability I NT DEFAULT O NOT NULL,
3637 expirati onDat e TI MESTAMP,
3638
3639 --Classification attributes. Assumes not derived from Associ ation
3640 sour ceChj ect UUI D NOT NULL,
3641 t ar get Qbj ect UUI D NOT NULL,
3642);
3643
3644
3645 CREATE TABLE d assi fi cati onNode (
3646 - -Regi stryQCbj ect Attributes
3647 id UUI D PRI MARY KEY NOT NULL,
3648 name LongNane,
3649 description Fr eeFor nifext ,
3650 accessControl Pol i cy UUI D NOT NULL,
3651
3652 --Versionable attributes
3653 maj or Ver si on I NT DEFAULT O NOT NULL,
3654 m nor Ver si on I NT DEFAULT 1 NOT NULL,
3655
3656 --RegistryEntry attributes
3657 st at us I NT DEFAULT O NOT NULL,
3658 user Ver si on Short Nane,
3659 stability I NT DEFAULT O NOT NULL,
3660 expirationDat e TI MESTAMP,
3661
3662 --COassificationNode attributes
3663 par ent Uul D,
3664 pat h VARCHAR(512) NOT NULL,
3665 code Short Nane
3666);
3667
3668 CREATE PROCEDURE d assi fi cati onNode_cl assi fi edCbj ect s(cl assi fi cati onNodel d) {
3268 --Must return a collection of WU Ds for RegistryEntries classified by this O assificati onNode
7 }
3671
ebXML Registry Services Specification Page 98

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741

ebXML Registry

May 2001

--Begin Registry Audit Trail tables

CREATE TABLE Audi t abl eEvent (

--Regi stryCbject Attributes
id
name
description
accessControl Pol i cy

- -Audi t abl eEvent attributes
user

event Type

regi stryEntry

ti mest anp

)i

CREATE TABLE User (

--Regi stryCbject Attributes
id
nane
description
accessContr ol Pol i cy

--User attributes
or gani zati on

--address attributes flattened

address_city
address_country
addr ess_post al Code
address_state

addr ess_street

enai

--fax attribute flattened
f ax_ar eaCode
f ax_count r yCode
f ax_ext ensi on
f ax_unber
fax_url

--nobi | ePhone attribute flattened

nmobi | ePhone_ar eaCode
nobi | ePhone_count r yCode
nmobi | ePhone_ext ensi on
nmobi | ePhone_unber

nmobi | ePhone_ur |

--nane attribute flattened
name_fi rst Nane
name_m ddl eNane
nane_| ast Nane

--pager attribute flattened
pager _ar eaCode
pager _count r yCode
pager _ext ensi on
pager _unber
pager _url

--tel ephone attribute flattened

t el ephone_ar eaCode

t el ephone_count ryCode
t el ephone_ext ensi on

t el ephone_unber

t el ephone_url

ebXML Registry Services Specification

UU D PRI MARY KEY NOT NULL
LongNane,
Fr eeFor nirext ,
UUI D NOT NULL

UJ D,
I NT DEFAULT O NOT NULL,
UU D NOT NULL
TI MESTAMP NOT NULL,

UUI D PRI MARY KEY NOT NULL
LongNane,
Fr eeFor nirext ,
UUI D NOT NULL,

UUI D NOT' NULL

Shor t Nane,
Shor t Nane,
Shor t Nare,

Shor t Nane,
Shor t Nare,

Shor t Nane,

VARCHAR(4) NOT NULL,

VARCHAR(8) ,
VARCHAR(8) NOT NULL,
UR

VARCHAR(4) NOT NULL,
VARCHAR(4) ,
VARCHAR(8) ,
VARCHAR(8) NOT NULL,
UR

Shor t Nane,
Shor t Nane,
Shor t Nane,

VARCHAR(4) NOT NULL,
VARCHAR(4) ,
VARCHAR(8) ,
VARCHAR(8) NOT NULL,
UR

VARCHAR(4) NOT NULL,
VARCHAR(4) ,
VARCHAR(8) ,
VARCHAR(8) NOT NULL,
URI,

Page 99

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811

ebXML Registry

May 2001

url
)

CREATE TABLE Organi zation (
--Regi stryCbject Attributes
id
nane
description
accessControl Pol i cy

--Versionabl e attributes
maj or Ver si on
m nor Ver si on

--RegistryEntry attributes
st at us
user Ver si on
stability
expi rati onDat e

--Organi zation attributes

URI,

UU D PRI MARY KEY NOT NULL,
LongNane,
Fr eeFor nirext ,
UUI D NOT NULL,

DEFAULT O NOT NULL,

|
| DEFAULT 1 NOT NULL,

NT
NT

I NT DEFAULT O NOT NULL,
Shor t Nane,
I NT DEFAULT O NOT NULL,
Tl MESTAWP,

--Organi zation. address attribute flattened

address_city
address_country
addr ess_post al Code
address_state

addr ess_street

--primary contact for Organization,

Shor t Nane,
Shor t Nane,
Shor t Nanre,
Shor t Nane,
Shor t Nane,

points to a User.

--Note many Users may belong to the same O gani zation

cont act

UU D NOT NULL,

--Organi zation.fax attribute falttened

f ax_ar eaCode

f ax_count r yCode
f ax_ext ensi on

f ax_unber
fax_url

--Organi zation. parent attribute

par ent

VARCHAR(4) NOT NULL,

VARCHAR(4) ,

VARCHAR(8) ,
VARCHAR(8) NOT NULL,
URI,

Uul D,

--Organi zation. tel ephone attribute falttened

t el ephone_ar eaCode

t el ephone_count ryCode
t el ephone_ext ensi on

t el ephone_unber

t el ephone_url

)i

VARCHAR(4) NOT NULL,
VARCHAR(4) ,
VARCHAR(8) ,
VARCHAR(8) NOT NULL,
UR

--Note that the ebRIMsecurity viewis not visible through the public query nechani sm

--in the current rel ease

--The RegistryEntry View all ows pol ynorphic queries over all ebRI M cl asses derived

--from Regi stryEntry

CREATE VI EWRegi stryEntry (
--Regi stryCbject Attributes
id,
name,
descri ption,
accessControl Pol i cy,

--Versionabl e attributes
maj or Ver si on,
m nor Ver si on,

ebXML Registry Services Specification

Page 100

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875

3876

ebXML Registry

May 2001

--RegistryEntry attributes
st at us,
user Ver si on,
stability,
expirationDat e

) AS
SELECT

--Regi stryQhj ect Attributes
id,
nanme
descri ption,
accessControl Policy,

--Versionabl e attributes
maj or Ver si on,
m nor Ver si on,

--RegistryEntry attributes
st at us,
user Ver si on,
stability,
expi rati onDat e

FROM Ext ri nsi cChj ect
UNI ON

SELECT

--Regi stryCbject Attributes
id,
name,
descri ption,
accessControl Pol i cy

--Versionabl e attributes
maj or Ver si on
m nor \Ver si on

--RegistryEntry attributes
st at us,
user Ver si on,
stability,
expi rationDat e
FROM (Regi stry) Package
UNI ON

SELECT

--Regi stryCbject Attributes
id,
nanme
descri ption,
accessControl Policy

--Versionabl e attributes
maj or Ver si on,
m nor Ver si on,

--RegistryEntry attributes
st at us,
user Ver si on,
stability,
expirationDat e

FROM d assi fi cati onNode;

ebXML Registry Services Specification

Copyright © UN/CEFACT and OASIS, 2001

Page 101

. All Rights Reserved.

3877

3878
3879
3880
3881
3882
3883

3884

3885
3886

3887
3888
3889
3890

3891
3892
3893

3894
3895
3896

3897
3898
3899

3900

3901
3902
3903

3904
3905
3906
3907

3908
3909

3910
3911

ebXML Registry May 2001

Appendix D Non-normative Content Based Ad Hoc Queries

The Registry SQL query capability supports the ability to search for content based not
only on metadata that catalogs the content but also the data contained within the
content itself. For example it is possible for a client to submit a query that searches for
all Collaboration Party Profiles that define a role named “seller” within a RoleName
element in the CPP document itself. Currently content-based query capability is
restricted to XML content.

D.1.1 Automatic Classification of XML Content

Content-based queries are indirectly supported through the existing classification
mechanism supported by the Registry.

A submitting organization may define logical indexes on any XML schema or DTD when
it is submitted. An instance of such a logical index defines a link between a specific
attribute or element node in an XML document tree and a ClassificationNode in a
classification scheme within the registry.

The registry utilizes this index to automatically classify documents that are instances of
the schema at the time the document instance is submitted. Such documents are
classified according to the data contained within the document itself.

Such automatically classified content may subsequently be discovered by clients using
the existing classification-based discovery mechanism of the Registry and the query
facilities of the ObjectQueryManager.

[Note] This approach is conceptually simlar to the way databases support
i ndexed retrieval. DBAs define indexes on tables in the schema. When
data is added to the table, the data gets automatically indexed.

D.1.2 Index Definition

This section describes how the logical indexes are defined in the SubmittedObject
element defined in the Registry DTD. The complete Registry DTD is specified in
Appendix A.

A SubmittedObject element for a schema or DTD may define a collection of
ClassificationIindexes in a ClassificationindexList optional element. The
ClassificationIndexList is ignored if the content being submitted is not of the SCHEMA
objectType.

The ClassificationIndex element inherits the attributes of the base class RegistryObject
in [ebRIM]. It then defines specialized attributes as follows:

1. classificationNode: This attribute references a specific ClassificationNode by its
ID.

ebXML Registry Services Specification Page 102

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

3912
3913
3914

3915

3916
3917

3918
3919
3920
3921
3922

3923

3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939

3940

3941
3942
3943
3944
3945
3946

3947

3948
3949
3950
3951

ebXML Registry May 2001

2. contentldentifier: This attribute identifies a specific data element within the
document instances of the schema using an XPATH expression as defined by
[XPT].

D.1.3 Example Of Index Definition

To define an index that automatically classifies a CPP based upon the roles defined
within its RoleName elements, the following index must be defined on the CPP schema
or DTD:

<O assi fi cati onl ndex
cl assificationNode="id-for-rol e-cl assificati on-schenge’
contentldentifier=/Rol e//Rol eNane

/>

D.1.4 Proposed XML Definition
<I--
A ClassificationlndexList is specified on ExtrinsicCObjects of objectType
'Schema' to define an automatic Classification of instance objects of the
schema using the specified classificati onNode as parent and a
Cl assificationNode created or selected by the object content as selected by
the contentldentifier
-->
<l ELEMENT C assificationl ndex EMPTY>
<I' ATTLI ST Cl assificati onl ndex
% bj ect Attri butes;
cl assificati onNode | DREF #REQUI RED
contentldentifier CDATA #REQUI RED
>

<l-- ClassificationlndexList contains new Cl assificati onl ndexes -->
<!l ELEMENT Cl assi ficationl ndexList (Cl assificationlndex)*>

D.1.5 Example of Automatic Classification

Assume that a CPP is submitted that defines two roles as “seller” and “buyer.” When the
CPP is submitted it will automatically be classified by two ClassificationNodes named
“buyer” and “seller” that are both children of the ClassificationNode (e.g. a node named
Role) specified in the classificationNode attribute of the Classificationindex. Note that if
either of the two ClassificationNodes named “buyer” and “seller” did not previously exist,
the ObjectManager would automatically create these ClassificationNodes.

Appendix E Security Implementation Guideline
This section provides a suggested blueprint for how security processing may be
implemented in the Registry. It is meant to be illustrative not prescriptive. Registries

may choose to have different implementations as long as they support the default
security roles and authorization rules described in this document.

ebXML Registry Services Specification Page 103

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

3952

3953
3954

3955
3956
3957

3958
3959

3960

3961

3962
3963
3964
3965
3966

3967

3968
3969
3970

3971
3972
3973

3974

3975
3976

3977

3978
3979

3980
3981

ebXML Registry May 2001

E.1 Authentication

1. As soon as a message is received, the first work is the authentication. A principal
object is created.

2. If the message is signed, it is verified (including the validity of the certificate) and the
DN of the certificate becomes the identity of the principal. Then the Registry is
searched for the principal and if found, the roles and groups are filled in.

3. If the message is not signed, an empty principal is created with the role
RegistryGuest. This step is for symmetry and to decouple the rest of the processing.

4. Then the message is processed for the command and the objects it will act on.

E.2 Authorization

For every object, the access controller will iterate through all the AccessControlPolicy
objects with the object and see if there is a chain through the permission objects to
verify that the requested method is permitted for the Principal. If any of the permission
objects which the object is associated with has a common role, or identity, or group with
the principal, the action is permitted.

E.3 Registry Bootstrap

When a Registry is newly created, a default Principal object should be created with the
identity of the Registry Admin’s certificate DN with a role RegistryAdmin. This way, any
message signed by the Registry Admin will get all the privileges.

When a Registry is newly created, a singleton instance of AccessControlPolicy is
created as the default AccessControlPolicy. This includes the creation of the necessary
Permission instances as well as the Privilges and Privilege attributes.

E.4 Content Submission — Client Responsibility

The Registry client has to sign the contents before submission — otherwise the content
will be rejected.

E.5 Content Submission — Registry Responsibility

1. Like any other request, the client will be first authenticated. In this case, the Principal
object will get the DN from the certificate.

2. As per the request in the message, the RegistryEntry will be created.

3. The RegistryEntry is assigned the singleton default AccessControlPolicy.

ebXML Registry Services Specification Page 104

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

3982
3983

3984

3985

3986
3987

3988

3989
3990
3991

3992
3993

3994
3995

3996
3997

3998

3999

4000
4001
4002

4003

4004
4005
4006

4007

4008
4009

ebXML Registry May 2001

4. If a principal with the identity of the SO is not available, an identity object with the
SO’s DN is created

5. A principal with this identity is created

E.6 Content Delete/Deprecate — Client Responsibility

The Registry client has to sign the payload (not entire message) before submission, for
authentication purposes; otherwise, the request will be rejected

E.7 Content Delete/Deprecate — Registry Responsibility

1. Like any other request, the client will be first authenticated. In this case, the Principal
object will get the DN from the certificate. As there will be a principal with this identity
in the Registry, the Principal object will get all the roles from that object

2. As per the request in the message (delete or deprecate), the appropriate method in
the RegistryObiject class will be accessed.

3. The access controller performs the authorization by iterating through the Permission
objects associated with this object via the singleton default AccessControlPolicy.

4. If authorization succeeds then the action will be permitted. Otherwise an error
response is sent back with a suitable AuthorizationException error message.

Appendix F Native Language Support (NLS)

F.1 Definitions

Although this section discusses only character set and language, the following terms
have to be defined clearly.

F.1.1 Coded Character Set (CCS):

CCS is a mapping from a set of abstract characters to a set of integers. [RFC 2130].
Examples of CCS are 1SO-10646, US-ASCII, ISO-8859-1, and so on.

F.1.2 Character Encoding Scheme (CES):

CES is a mapping from a CCS (or several) to a set of octets. [RFC 2130]. Examples of
CES are 1SO-2022, UTF-8.

ebXML Registry Services Specification Page 105

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

4010

4011
4012
4013
4014
4015

4016

4017
4018
4019
4020
4021
4022
4023

4024
4025

4026
4027
4028
4029
4030
4031

4032

4033
4034

4035

4036
4037
4038

4039

4040
4041
4042
4043

ebXML Registry May 2001

F.1.3 Character Set (charset):

charset is a set of rules for mapping from a sequence of octets to a sequence of
characters.[RFC 2277],[RFC 2278]. Examples of character set are ISO-2022-JP, EUC-
KR.

A list of registered character sets can be found at [IANA].

F.2 NLS And Request / Response Messages

For the accurate processing of data in both registry client and registry services, it is
essential to know which character set is used. Although the body part of the transaction
may contain the charset in xml encoding declaration, registry client and registry services
shall specify charset parameter in MIME header when they use text/xml. Because as
defined in [RFC 3023], if a text/xml entity is received with the charset parameter
omitted, MIME processors and XML processors MUST use the default charset value of
"us-ascii".

Ex. Content-Type: text/xml; charset=1S0O-2022-JP

Also, when an application/xml entity is used, the charset parameter is optional, and
registry client and registry services must follow the requirements in Section 4.3.3 of
[REC-XML] which directly address this contingency.

If another Content-Type is chosen to be used, usage of charset must follow [RFC 3023].

F.3 NLS And Storing of RegistryEntry

This section provides NLS guidelines on how a registry should store RegistryEntry
instances.

F.3.1 Character Set of RegistryEntry

This is basically an implementation issue because the actual character set that the
RegistryEntry is stored with, does not affect the interface. However, it is highly
recommended to use UTF-16 or UTF-8 for covering various languages.

F.3.2 Language Information of RegistryEntry

The language may be specified in xml:lang attribute (Section 2.12 [REC-XML)). If the
xml:lang attribute is specified, then the registry may use that language code as the
value of a special Slot with name language and sloType of nls in the RegistryEntry.
The value must be compliant to [RFC 1766]. Slots are defined in [ebRIM].

ebXML Registry Services Specification Page 106

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

4044

4045

4046

4047
4048
4049
4050
4051
4052

4053

4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064

4065

4066
4067

4068
4069

4070

ebXML Registry May 2001

F.4 NLS And Storing of Repository Items

This section provides NLS guidelines on how a registry should store repository items.

F.4.1 Character Set of Repository Items

Unlike the character set of RegistryEntry, the charset of a repository item must be
preserved as it is originally specified in the transaction. The registry may use a special
Slot with name repositoryltemCharset, and sloType of nls for the RegistryEntry for
storing the charset of the corresponding repository item. Value must be the one defined
in [RFC 2277], [RFC 2278]. The repositoryltemCharset is optional because not all
repository items require it.

F.4.2 Language information of repository item

Specifying only character set is not enough to tell which language is used in the
repository item. A registry may use a special Slot with name repositoryltemLang, and
sloType of nls to store that information. This attribute is optional because not all
repository items require it. Value must be compliant to [RFC 1766]

This document currently specifies only the method of sending the information of
character set and language, and how it is stored in a registry. However, the language
information may be used as one of the query criteria, such as retrieving only DTD
written in French. Furthermore, a language negotiation procedure, like registry client is
asking a favorite language for messages from registry services, could be another
functionality for the future revision of this document.

Appendix G Terminology Mapping

While every attempt has been made to use the same terminology used in other works
there are some terminology differences.

The following table shows the terminology mapping between this specification and that
used in other specifications and working groups.

This Document OASIS ISO 11179
“repository item” RegisteredObject
RegistryEntry RegistryEntry Administered Component
ExternalLink RelatedData N/A
Object.id regEntryld, orgld, etc.
ExtrinsicObject.uri objectURL
ExtrinsicObject.objectType | defnSource, objectType

ebXML Registry Services Specification Page 107

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

4071

4072

ebXML Registry May 2001
RegistryEntry.name commonName
Object.description shortD_es_cription,

Description
ExtrinsicObject.mimeType | objectType="mime”

fileType="“<mime type>"
Versionable.majorVersion | userVersion only
Versionable.minorVersion | userVersion only
ReqistryEntry.status registrationStatus

Table 1: Terminology Mapping Table

ebXML Registry Services Specification Page 108

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

ebXML Registry May 2001

2072 References

4073 [Bra97] Keywords for use in RFCs to Indicate Requirement Levels.
4074 [GLS] ebXML Glossary, _http://www.ebxml.org/documents/199909/terms_of_reference.htm
4075 [TA] ebXML Technical Architecture

4076 http://lwww.ebxml.org/specdrafts/ebXML TA v1.0.pdf
4077 [OAS] OASIS Information Model
4078 http://www.nist.goV/itl/div897/ctg/regrep/oasis-work.html

4079 [ISO] 1SO 11179 Information Model
4080 http://208.226.167.205/SC32/jtc1sc32.nsf/576871ad2f11bba785256621005419d7/b83fc

4081 7816a6064c68525690e0065f913?0OpenDocument
4082 [ebRIM] ebXML Registry Information Model
4083 http://www.ebxml.org/project_teams/reqistry/private/reqgistrylnfoModelv0.54.pdf

4084 [ebBPM] ebXML Business Process Specification Schema
4085 http://www.ebxml.org/specdrafts/Busv2-0.pdf

4086 [ebCPP] ebXML Collaboration-Protocol Profile and Agreement Specification

4087 http://lwww.ebxml.org/project teams/trade partner/private/
4088 [ebXML-UDDI] Using UDDI to Find ebXML Reg/Reps
4089 http://lists.ebxml.org/archives/ebxml-regrep/200104/msg00104.html

4090 [CTB] Context table informal document from Core Components

4091 [ebMS] ebXML Messaging Service Specification, Version 0.21
4092 http://ebxml.org/project_teams/transport/private/ebXML_Messaging_Service_Specification_v0-21.pdf

4093 [ERR] ebXML TRP Error Handling Specification
4094 http://www.ebxml.org/project_teams/transport/ebXML_Message_Service Specification_v-0.8_001110.pdf

4095 [SEC] ebXML Risk Assessment Technical Report, Version 3.6

4096 http://lists.ebxml.org/archives/ebxml-ta-security/200012/msg00072.html
4097 [XPT] XML Path Language (XPath) Version 1.0
4098 http://www.w3.0rg/TR/xpath
4099 [SQL] Structured Query Language (FIPS PUB 127-2)
4100 http://www.itl.nist.gov/fipspubs/fip127-2.htm
4101
4102 [SQL/PSM] Database Language SQL — Part 4: Persistent Stored Modules
4103 (SQL/PSM) [ISO/IEC 9075-4:1996]
ebXML Registry Services Specification Page 109

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

4104
4105

4106
4107

4108
4109

4110
4111

4112
4113

4114
4115

4116
4117

4118
4119

4120
4121

4122
4123

4124
4125

4126
4127

4128

4129
4130
4131

4132

4133
4134
4135
4136

4137

ebXML Registry May 2001

[IANA] IANA (Internet Assigned Numbers Authority).

Official Names for Character Sets, ed. Keld Simonsen et al.
ftp://ftp.isi.edu/in-notes/iana/assignments/character -sets

[RFC 1766] IETF (Internet Engineering Task Force). RFC 1766:

Tags for the Identification of Languages, ed. H. Alvestrand. 1995.
http://www.cis.ohio-state.ed u/htbin/rfc/rfc1766.html

[RFC 2277] IETF (Internet Engineering Task Force). RFC 2277:

IETF policy on character sets and languages, ed. H. Alvestrand. 1998.
http://www.cis.ohio-state.edu/htbin/rfc/rfc2277.html

[RFC 2278] IETF (Internet Engineering Task Force). RFC 2278:

IANA Charset Registration Procedures, ed. N. Freed and J. Postel. 1998.
http://www.cis.ohio-state. edu/htbin/rfc/rfc2278.html

[RFC 3023] IETF (Internet Engineering Task Force). RFC 3023:

XML Media Types, ed. M. Murata. 2001.
ftp://ftp.isi.edu/in-notes/rfc3023.txt

[REC-XML] WS3C Recommendation. Extensible Markup language(XML)1.0(Second
Edition)
http://www.w3.0rg/TR/REC-xml

[UUID] DCE 128 bit Universal Unique Identifier
http://www.opengroup.org/onlinepubs/009629399/apdxa.htm#tagcjh_20
http://www.opengroup.org/publications/catalog/c706.htmttp://www.w3.0rg/TR/REC-xml

Disclaimer

The views and specification expressed in this document are those of the authors and
are not necessarily those of their employers. The authors and their employers
specifically disclaim responsibility for any problems arising from correct or incorrect
implementation or use of this design.

ebXML Registry Services Specification Page 110

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

ebXML Registry May 2001

2137 Contact Information

4138 Team Leader

4139 Name: Scott Nieman
4140 Company: Norstan Consulting
4141 Street: 5101 Shady Oak Road
4142 City, State, Postal Code: Minnetonka, MN 55343
4143 Country: USA
4144 Phone: 952.352.5889
4145 Email: Scott.Nieman@Norstan
4146
4147 Vice Team Lead
4148 Name: Yutaka Yoshida
4149 Company: Sun Microsystems
4150 Street: 901 San Antonio Road, MS UMPK17-102
4151 City, State, Postal Code: Palo Alto, CA 94303
4152 Country: USA
4153 Phone: 650.786.5488
4154 Email: Yutaka.Yoshida@eng.sun.com
4155
4156 Editor
4157 Name: Farrukh S. Najmi
4158 Company: Sun Microsystems
4159 Street: 1 Network Dr., MS BUR02-302
4160 City, State, Postal Code: Burlington, MA, 01803-0902
4161 Country: USA
4162 Phone: 781.442.0703
4163 Email: najmi@east.sun.com
4164
4165
ebXML Registry Services Specification Page 111

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

ebXML Registry May 2001

a1e5 Copyright Statement

4166 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.
4167

4168 This document and translations of it may be copied and furnished to others, and

4169 derivative works that comment on or otherwise explain it or assist in its implementation
4170 MAY be prepared, copied, published and distributed, in whole or in part, without

4171 restriction of any kind, provided that the above copyright notice and this paragraph are
4172 included on all such copies and derivative works. However, this document itself MAY
4173 not be modified in any way, such as by removing the copyright notice or references to
4174 ebXML, UN/CEFACT, or OASIS, except as required to translate it into languages other
4175 than English.

4176

4177 The limited permissions granted above are perpetual and will not be revoked by ebXML
4178 Ofr its successors or assigns.

4179
4180 This document and the information contained herein is provided on an

4181 "AS IS" basis and ebXML DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
4182 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
4183 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
4184 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR

4185 PURPOSE.

ebXML Registry Services Specification Page 112

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

